In vivo transcranial brain surgery with an ultrasonic time reversal mirror

Author:

Pernot Mathieu1,Aubry Jean-Francois1,Tanter Mickael1,Boch Anne-Laure2,Marquet Fabrice1,Kujas Michele3,Seilhean Danielle3,Fink Mathias1

Affiliation:

1. Laboratoire Ondes et Acoustique, Unité de Recherche Centre National de la Recherche Scientifique; and

2. Departments of Neurosurgery and

3. Neuropathology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France

Abstract

Object High-intensity focused ultrasonography is known to induce controlled and selective noninvasive destruction of tissues by focusing ultrasonic beams within organs, like a magnifying glass concentrating enough sunlight to burn a hole in paper. Such a technique should be highly interesting for the treatment of deep-seated lesions in the brain. Nevertheless, ultrasonic tissue ablation in the brain has long been hampered by the defocusing effect of the skull bone. Methods In this in vivo study, the authors used a high-power time-reversal mirror specially designed for noninvasive ultrasonic brain treatment to induce thermal lesions through the skulls of 10 sheep. The sheep were divided into three groups and, depending on group, were killed 1, 2, or 3 weeks after treatment. The thermal lesions were confirmed based on findings of posttreatment magnetic resonance imaging and histological examinations. After treatment, the basic neurological functions of the animals were unchanged: the animals recovered from anesthesia without any abnormal delay and did not exhibit signs of paralysis or coma. No major behavioral change was observed. Conclusions The results provide striking evidence that noninvasive ultrasonographic brain surgery is feasible. Thus the authors offer a novel noninvasive method of performing local brain ablation in animals for behavioral studies. This technique may lead the way to noninvasive and nonionizing treatment of brain tumors and neurological disorders by selectively targeting intracranial lesions. Nevertheless, sheep do not represent a good functional model and extensive work will need to be conducted preferably on monkeys to investigate the effects of this treatment.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Cited by 109 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3