Magnetic resonance imaging of in vitro glioma cell invasion

Author:

Bernas Lisa M.12,Foster Paula J.12,Rutt Brian K.123

Affiliation:

1. 1Imaging Research Laboratories, Robarts Research Institute

2. 2Department of Medical Biophysics, University of Western Ontario

3. 3Department of Diagnostic Radiology and Nuclear Medicine, University of Western Ontario, London, Ontario, Canada

Abstract

Object An understanding of single glioma cell invasion has been limited by the static picture provided by histological studies. The ability to nondestructively assess cell invasion dynamically in a full 3D volume would improve the quality and quantity of information available from both in vivo and in vitro experiments. The purpose of this study was to observe glioma cell invasion in a 3D in vitro model using a microimaging protocol at 1.5 tesla and to assess the uptake of micron-sized particles of iron oxide (MPIO) and the consequent effects on cell function. Methods Rat C6 glioma cells were labeled with MPIO to a sufficient extent to allow single cell detection in vitro without significant effects on cell proliferation or plating efficiency. When placed on agar-coated plates, the cells formed stable multicellular tumor spheroids (MCTSs), which were embedded in collagen type I gel and serially visualized using magnetic resonance (MR) imaging and phase-contrast microscopy over 8 days. The MCTSs initially appeared as large susceptibility artifacts on MR images, but within 2 days, as cells moved away from the main MCTS, small discrete areas of signal loss, possibly due to single cells, could be observed and tracked. Conclusions Glioma cell invasion can be nondestructively observed using MR imaging. The sensitivity of MR imaging, along with its ability to represent full 3D volumes noninvasively over time, makes it ideal for longitudinal in vivo cell tracking studies.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3