Frameless neuronavigation with computer vision and real-time tracking for bedside external ventricular drain placement: a cadaveric study

Author:

Robertson Faith C.123,Sha Raahil M.45,Amich Jose M.45,Essayed Walid Ibn36,Lal Avinash45,Lee Benjamin H.45,Calvachi Prieto Paola23,Tokuda Junichi7,Weaver James C.8,Kirollos Ramez W.910,Chen Min Wei9,Gormley William B.236

Affiliation:

1. Department of Neurosurgery, Massachusetts General Hospital, Boston;

2. Computational Neuroscience Outcomes Center, Brigham and Women’s Hospital, Boston;

3. Harvard Medical School, Boston;

4. Zeta Surgical Inc., Boston;

5. Harvard Innovation Labs, Boston;

6. Department of Neurosurgery, Brigham and Women’s Hospital, Boston;

7. Department of Radiology, Brigham and Women’s Hospital, Boston;

8. Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts;

9. Department of Neurosurgery, National Neuroscience Institute, Singapore; and

10. Department of Neurosurgery, SingHealth Duke-NUS, National University of Singapore, Singapore

Abstract

OBJECTIVE A major obstacle to improving bedside neurosurgical procedure safety and accuracy with image guidance technologies is the lack of a rapidly deployable, real-time registration and tracking system for a moving patient. This deficiency explains the persistence of freehand placement of external ventricular drains, which has an inherent risk of inaccurate positioning, multiple passes, tract hemorrhage, and injury to adjacent brain parenchyma. Here, the authors introduce and validate a novel image registration and real-time tracking system for frameless stereotactic neuronavigation and catheter placement in the nonimmobilized patient. METHODS Computer vision technology was used to develop an algorithm that performed near-continuous, automatic, and marker-less image registration. The program fuses a subject’s preprocedure CT scans to live 3D camera images (Snap-Surface), and patient movement is incorporated by artificial intelligence–driven recalibration (Real-Track). The surface registration error (SRE) and target registration error (TRE) were calculated for 5 cadaveric heads that underwent serial movements (fast and slow velocity roll, pitch, and yaw motions) and several test conditions, such as surgical draping with limited anatomical exposure and differential subject lighting. Six catheters were placed in each cadaveric head (30 total placements) with a simulated sterile technique. Postprocedure CT scans allowed comparison of planned and actual catheter positions for user error calculation. RESULTS Registration was successful for all 5 cadaveric specimens, with an overall mean (± standard deviation) SRE of 0.429 ± 0.108 mm for the catheter placements. Accuracy of TRE was maintained under 1.2 mm throughout specimen movements of low and high velocities of roll, pitch, and yaw, with the slowest recalibration time of 0.23 seconds. There were no statistically significant differences in SRE when the specimens were draped or fully undraped (p = 0.336). Performing registration in a bright versus a dimly lit environment had no statistically significant effect on SRE (p = 0.742 and 0.859, respectively). For the catheter placements, mean TRE was 0.862 ± 0.322 mm and mean user error (difference between target and actual catheter tip) was 1.674 ± 1.195 mm. CONCLUSIONS This computer vision–based registration system provided real-time tracking of cadaveric heads with a recalibration time of less than one-quarter of a second with submillimetric accuracy and enabled catheter placements with millimetric accuracy. Using this approach to guide bedside ventriculostomy could reduce complications, improve safety, and be extrapolated to other frameless stereotactic applications in awake, nonimmobilized patients.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3