Affiliation:
1. Department of Neurosurgery, Japanese Red Cross Kumamoto Hospital, Higashiku;
2. Department of Neurosurgery, Faculty of Life Sciences, Kumamoto University School of Medicine, Chuo-ku, Kumamoto, Japan
3. Department of Neurosurgery, National Hospital Organization Kumamoto Medical Center, Chuo-ku; and
Abstract
OBJECT
Rotterdam CT scoring is a CT classification system for grouping patients with traumatic brain injury (TBI) based on multiple CT characteristics. This retrospective study aimed to determine the relationship between initial or preoperative Rotterdam CT scores and TBI prognosis after decompressive craniectomy (DC).
METHODS
The authors retrospectively reviewed the medical records of all consecutive patients who underwent DC for nonpenetrating TBI in 2 hospitals from January 2006 through December 2013. Univariate and multivariate logistic regression and receiver operating characteristic (ROC) curve analyses were used to determine the relationship between initial or preoperative Rotterdam CT scores and mortality at 30 days or Glasgow Outcome Scale (GOS) scores at least 3 months after the time of injury. Unfavorable outcomes were GOS Scores 1–3 and favorable outcomes were GOS Scores 4 and 5.
RESULTS
A total of 48 cases involving patients who underwent DC for TBI were included in this study. Univariate analyses showed that initial Rotterdam CT scores were significantly associated with mortality and both initial and preoperative Rotterdam CT scores were significantly associated with unfavorable outcomes. Multivariable logistic regression analysis adjusted for established predictors of TBI outcomes showed that initial Rotterdam CT scores were significantly associated with mortality (OR 4.98, 95% CI 1.40–17.78, p = 0.01) and unfavorable outcomes (OR 3.66, 95% CI 1.29–10.39, p = 0.02) and preoperative Rotterdam CT scores were significantly associated with unfavorable outcomes (OR 15.29, 95% CI 2.50–93.53, p = 0.003). ROC curve analyses showed cutoff values for the initial Rotterdam CT score of 5.5 (area under the curve [AUC] 0.74, 95% CI 0.59–0.90, p = 0.009, sensitivity 50.0%, and specificity 88.2%) for mortality and 4.5 (AUC 0.71, 95% CI 0.56–0.86, p = 0.02, sensitivity 62.5%, and specificity 75.0%) for an unfavorable outcome and a cutoff value for the preoperative Rotterdam CT score of 4.5 (AUC 0.81, 95% CI 0.69–0.94, p < 0.001, sensitivity 90.6%, and specificity 56.2%) for an unfavorable outcome.
CONCLUSIONS
Assessment of changes in Rotterdam CT scores over time may serve as a prognostic indicator in TBI and can help determine which patients require DC.
Publisher
Journal of Neurosurgery Publishing Group (JNSPG)
Subject
Genetics,Animal Science and Zoology
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献