Biomechanical analysis of occipitocervical stabilization techniques: emphasis on integrity of osseous structures at the occipital implantation sites

Author:

Cunningham Bryan W.1,Mueller Kyle B.2,Mullinix Kenneth P.1,Sun Xiaolei3,Sandhu Faheem A.2

Affiliation:

1. Musculoskeletal Education Center, Department of Orthopaedic Surgery, MedStar Union Memorial Hospital, Baltimore, Maryland;

2. Department of Neurosurgery, Georgetown University Medical Center, Washington, DC; and

3. Department of Orthopaedic Surgery, Tianjin Hospital, Tianjin, China

Abstract

OBJECTIVEThe objective of the current study was to quantify and compare the multidirectional flexibility properties of occipital anchor fixation with conventional methods of occipitocervical screw fixation using nondestructive and destructive investigative methods.METHODSFourteen cadaveric occipitocervical specimens (Oc–T2) were randomized to reconstruction with occipital anchors or an occipital plate and screws. Using a 6-degree-of-freedom spine simulator with moments of ± 2.0 Nm, initial multidirectional flexibility analysis of the intact and reconstructed conditions was performed followed by fatigue loading of 25,000 cycles of flexion-extension (x-axis, ± 2.0 Nm), 15,000 cycles of lateral bending (z-axis, ± 2.0 Nm), and 10,000 cycles of axial rotation (y-axis, ± 2.0 Nm). Fluoroscopic images of the implantation sites were obtained before and after fatigue testing and placed on an x-y coordinate system to quantify positional stability of the anchors and screws used for reconstruction and effect, if any, of the fatigue component. Destructive testing included an anterior flexural load to construct failure. Quantification of implant, occipitocervical, and atlantoaxial junction range of motion is reported as absolute values, and peak flexural failure moment in Newton-meters (Nm).RESULTSAbsolute value comparisons between the intact condition and 2 reconstruction groups demonstrated significant reductions in segmental flexion-extension, lateral bending, and axial rotation motion at the Oc–C1 and C1–2 junctions (p < 0.05). The average bone mineral density at the midline keel (1.422 g/cm3) was significantly higher compared with the lateral occipital region at 0.671 g/cm3 (p < 0.05). There were no significant differences between the occipital anchor and plate treatments in terms of angular rotation (degrees; p = 0.150) or x-axis displacement (mm; p = 0.572), but there was a statistically significant difference in y-axis displacement (p = 0.031) based on quantitative analysis of the pre- and postfatigue fluoroscopic images (p > 0.05). Under destructive anterior flexural loading, the occipital anchor group failed at 90 ± 31 Nm, and the occipital plate group failed at 79 ± 25 Nm (p > 0.05).CONCLUSIONSBoth reconstructions reduced flexion-extension, lateral bending, and axial rotation at the occipitocervical and atlantoaxial junctions, as expected. Flexural load to failure did not differ significantly between the 2 treatment groups despite occipital anchors using a compression-fit mechanism to provide fixation in less dense bone. These data suggest that an occipital anchor technique serves as a biomechanically viable clinical alternative to occipital plate fixation.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

General Medicine

Reference40 articles.

1. An anatomic study of the thickness of the occipital bone. Implications for occipitocervical instrumentation;Ebraheim;Spine (Phila Pa 1976),1996

2. The evolution of posterior cervical and occipitocervical fusion and instrumentation;Vender;Neurosurg Focus,2004

3. Inside-outside technique for posterior occipitocervical spine instrumentation and stabilization: preliminary results;Pait;J Neurosurg,1999

4. Biomechanical evaluation of five different occipito-atlanto-axial fixation techniques;Oda;Spine (Phila Pa 1976),1999

5. Correction of clivoaxial angle deformity in the setting of suboccipital craniectomy: technical note;Felbaum;J Neurosurg Spine,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3