Image-guided microradiosurgery for skull base tumors: advantages of using gadolinium-enhanced constructive interference in steady-state imaging

Author:

Hayashi Motohiro,Ochiai Taku,Nakaya Kotaro,Chernov Mikhail,Tamura Noriko,Yomo Shoji,Izawa Masahiro,Hori Tomokatsu,Takakura Kintomo,Regis Jean

Abstract

✓Gamma Knife surgery (GKS) is image-guided surgery for brain tumors. Precise tumor visualization is needed in dose planning to control tumor progression. The surrounding vital structures must also be clearly defined to allow the preservation of their function. A special magnetic resonance (MR) imaging sequence was chosen for use with GKS to treat skull base and suprasellar tumors.Gadolinium-enhanced 0.5-mm constructive interference in steady-state (CISS) slices were obtained in skull base and suprasellar tumors. Each structure that was adjacent to the tumor could be visualized more clearly by using this imaging technique because the tumor became transparent even though there was no change in the appearance of the surrounding structures after injection of Gd. Use of this technique in acoustic tumors allowed the seventh and eighth cranial nerves to be visualized in the cisternal and intrameatal portions; both of which were distinguishable from the tumor. Suprasellar tumor could be distinguished from the adjacent optic pathway. The use of Gd-enhanced CISS imaging allowed for optimal dose planning with very high conformity in every tumor. Achieving this high conformity allowed the preservation of adjacent structures and their functions.Establishing optimal dose planning in brain tumors is very important to overcome the problem of producing new neurological deficits in patients who may already be suffering disease-related deficits. The use of this special CISS MR imaging sequence may help accomplish this goal.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3