Biomechanical assessment of the effect of sublaminar band tensioning on lumbar motion

Author:

Park Brian J.1,Gold Colin J.1,Christianson David1,DeVries Watson Nicole A.2,Nourski Kirill V.13,Woodroffe Royce W.1,Hitchon Patrick W.1

Affiliation:

1. Departments of Neurosurgery and

2. Orthopedics and Rehabilitation, The University of Iowa Hospitals and Clinics; and

3. Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa

Abstract

OBJECTIVE Adjacent-segment disease (ASD) proximal to lumbosacral fusion is assumed to result from increased stress and motion that extends above or below the fusion construct. Sublaminar bands (SBs) have been shown to potentially mitigate stresses in deformity constructs. A similar application of SBs in lumbar fusions is not well described yet may potentially mitigate against ASD. METHODS Eight fresh-frozen human cadaveric spine specimens were instrumented with transforaminal lumbar interbody fusion (TLIF) cages at L3–4 and L4–5, and pedicle screws from L3 to S1. Bilateral SBs were applied at L2 and tightened around the rods extending above the L3 pedicle screws. After being mounted on a testing frame, the spines were loaded at L1 to 6 Nm in all 3 planes, i.e., flexion/extension, right and left lateral bending, and right and left axial rotation. Motion and intradiscal pressures (IDPs) at L2–3 were measured for 5 conditions: intact, instrumentation (L3–S1), band tension (BT) 30%, BT 50%, and BT 100%. RESULTS There was significant increase in motion at L2–3 with L3–S1 instrumentation compared with the intact spine in flexion/extension (median 8.78°, range 4.07°–10.81°, vs median 7.27°, range 1.63°–9.66°; p = 0.016). When compared with instrumentation, BT 100% reduced motion at L2–3 in flexion/extension (median 8.78°, range 4.07°–10.81°, vs median 3.61°, range 1.11°–9.39°; p < 0.001) and lateral bending (median 6.58°, range 3.67°–8.59°, vs median 5.62°, range 3.28°–6.74°; p = 0.001). BT 50% reduced motion at L2–3 only in flexion/extension when compared with instrumentation (median 8.78°, range 4.07°–10.81°, vs median 5.91°, range 2.54°–10.59°; p = 0.027). There was no significant increase of motion at L1–2 with banding when compared with instrumentation, although an increase was seen from the intact spine with BT 100% in flexion/extension (median 5.14°, range 2.47°–9.73°, vs median 7.34°, range 4.22°–9.89°; p = 0.005). BT 100% significantly reduced IDP at L2–3 from 25.07 psi (range 2.41–48.08 psi) before tensioning to 19.46 psi (range −2.35 to 29.55 psi) after tensioning (p = 0.016). CONCLUSIONS In this model, the addition of L2 SBs reduced motion and IDP at L2–3 after the L3–S1 instrumentation. There was no significant increase in motion at L1–2 in response to band tensioning compared with instrumentation alone. The application of SBs may have a clinical application in reducing the incidence of ASD.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

General Medicine

Reference15 articles.

1. Adjacent segment disease;Virk SS,2014

2. Adjacent segment disease perspective and review of the literature;Saavedra-Pozo FM,2014

3. Risk of adjacent-segment disease requiring surgery after short lumbar fusion: results of the French Spine Surgery Society Series;Scemama C,2016

4. Biomechanical study of proximal adjacent segment degeneration after posterior lumbar interbody fusion and fixation: a finite element analysis;Jiang S,2019

5. Could the topping-off technique be the preventive strategy against adjacent segment disease after pedicle screw-based fusion in lumbar degenerative diseases? A systematic review;Chou PH,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3