Impact of skull base development on endonasal endoscopic surgical corridors

Author:

Banu Matei A.1,Guerrero-Maldonado Amancio1,McCrea Heather J.1,Garcia-Navarro Victor1,Souweidane Mark M.12,Anand Vijay K.3,Heier Linda4,Schwartz Theodore H.135,Greenfield Jeffrey P.12

Affiliation:

1. Departments of Neurological Surgery,

2. Pediatrics,

3. Otolaryngology—Head and Neck Surgery,

4. Radiology, Weill Cornell Medical College, New York, New York

5. Neurology and Neuroscience, and

Abstract

Object Scarce morphometric data exist on the developing skull base as a corridor for endonasal endoscopic approaches (EEAs). Furthermore, the impact of skull base lesions on its development has not been assessed. The authors describe a novel set of anatomical parameters characterizing the developmental process as well as the utility of these parameters in preoperative planning and a feasibility assessment of EEAs for neurosurgical treatment of skull base lesions in children. Methods Based on specific MRI sequences in 107 pediatric patients (2–16 years of age) without skull base lesions (referred to here as the normal population), 3 sets of anatomical parameters were analyzed according to age group and sex: drilling distance, restriction sites, and working distance parameters. A separate set of patients undergoing EEAs was analyzed in similar fashion to address the impact of skull base lesions on the developmental process. Results The volume of the sphenoid sinus significantly increases with age, reaching 6866.4 mm3 in the 14–16 years age group, and directly correlates with the pneumatization type (r = 0.533, p = 0.0001). The pneumatization process progresses slowly in a temporal-posterior direction, as demonstrated by the growth trend of the sellar width (r = 0.428, p = 0.0001). Nasal restriction sites do not change significantly with age, with little impact on EEAs. The intercarotid distance is significantly different only in the extreme age groups (3.9 mm, p = 0.038), and has an important impact on the transsphenoidal angle and the intracranial dissection limits (r = 0.443, p < 0.0001). The 14.9° transsphenoidal angle at 2–4 years has a 37.6% significant increase in the 11–13 years age group (p = 0.001) and is highly dependent on pneumatization type. Age-dependent differences between working parameters are mostly noted for the extreme age groups, such as the 8.6-mm increase in nare-vomer distance (p = 0.025). The nare-sellar distance is the only parameter with significant differences based on sex. Skull base lesions induce a high degree of variance in skull base measurements, delaying development and decreasing parameter values. Skull base parameters are interdependent. Nare-sellar distance can be used to assess global skull base development because it highly correlates with the intercarotid distance in both the normal population and in patients harboring skull base lesions. Conclusions Skull base development is a slow, gradual, age-dependent, sex-independent process significantly altering endonasal endoscopic corridors. Preoperative MRI measurements of the pediatric skull base are thus a useful adjunct in choosing the appropriate corridor and in assessing working angles and limits during dissection or reparative surgery. Skull base lesions can significantly impact normal skull base development and age-dependent growth patterns.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3