Anterior insula stimulation increases pain threshold in humans: a pilot study

Author:

Liu Chang-Chia1,Moosa Shayan1,Quigg Mark2,Elias W. Jeffrey1

Affiliation:

1. Departments of Neurological Surgery and

2. Neurology, University of Virginia School of Medicine, Charlottesville, Virginia

Abstract

OBJECTIVE Chronic pain results in an enormous societal and financial burden. Opioids are the mainstay of treatment, but opioid abuse has led to an epidemic in the United States. Nonpharmacological treatment strategies like deep brain stimulation could be applied to refractory chronic pain if safe and effective brain targets are identified. The anterior insula is a putative mediator of pain-related affective-motivational and cognitive-evaluative cerebral processing. However, the effect of anterior insula stimulation on pain perception is still unknown. Here, the authors provide behavioral and neurophysiological evidence for stimulating the anterior insula as a means of potential therapeutic intervention for patients with chronic pain. METHODS Six patients with epilepsy in whom intracerebral electrodes had been implanted for seizure localization were recruited to the study. The direct anterior insula stimulations were performed in the inpatient epilepsy monitoring unit while subjects were fully awake, comfortable, and without sedating medications. The effects of anterior insula stimulation were assessed with quantitative sensory testing for heat pain threshold, nociceptive-specific cutaneous laser-evoked potentials, and intracranial electroencephalogram (EEG) recordings. Control stimulation of noninsular brain regions was performed to test stimulation specificity. Sham stimulations, in which no current was delivered, were also performed to control for potential placebo effects. The safety of these stimulations was evaluated by bedside physicians, real-time intracranial EEG monitoring, and electrocardiogram recordings. RESULTS Following anterior insula stimulations, the heat pain threshold of each patient significantly increased from baseline (p < 0.001) and correlated with stimulation intensity (regression analysis: β = 0.5712, standard error 0.070, p < 0.001). Significant changes in ongoing intracranial EEG frequency band powers (p < 0.001), reduction in laser pain intensity, and attenuated laser-evoked potentials were also observed following stimulations. Furthermore, the observed behavioral and neurophysiological effects persisted beyond the stimulations. Subjects were not aware of the stimulations, and there were no cardiovascular or untoward effects. CONCLUSIONS Additional, nonpharmacological therapies are imperative for the future management of chronic pain conditions and to mitigate the ongoing opioid crisis. This study suggests that direct stimulation of the anterior insula can safely alter cerebral pain processing in humans. Further investigation of the anterior insula as a potential target for therapeutic neuromodulation is underway.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3