Consistent focal cerebral ischemia without posterior cerebral artery occlusion and its real-time monitoring in an intraluminal suture model in mice

Author:

Akamatsu Yosuke1,Shimizu Hiroaki2,Saito Atsushi2,Fujimura Miki3,Tominaga Teiji1

Affiliation:

1. Department of Neurosurgery, Tohoku University Graduate School of Medicine;

2. Department of Neurosurgery, Kohnan Hospital; and

3. Department of Neurosurgery, National Hospital Organization Sendai Medical Center, Sendai, Japan

Abstract

Object In the intraluminal suture model of middle cerebral artery occlusion (MCAO) in the mouse, disturbance of blood flow from the internal carotid artery to the posterior cerebral artery (PCA) may affect the size of the infarction. In this study, PCA involvement in the model was investigated and modified for consistent MCAO without involving the PCA territory. Methods Thirty-seven C57Bl/6 mice were randomly divided into 4 groups according to the length of coating over the tip of the suture (1, 2, 3, or 4 mm) and subjected to transient MCAO for 2 hours. Real-time topographical cerebral blood flow was monitored over both hemispheres by laser speckle flowmetry. After 24 hours of reperfusion, the infarct territories and volumes were evaluated. Results The 1- and 2-mm coating groups showed all lesions in the MCA territory. In the 3- and 4-mm coating groups, 62.5% and 75% of mice, respectively, showed lesions in both the MCA and the PCA territories and other lesions in the MCA territory. Mice in the 1- and 2-mm coating groups had significantly smaller infarct volumes than the 3- and 4-mm groups. Laser speckle flowmetry was useful to distinguish whether the PCA territory would undergo infarction. Conclusions Small changes in the coating length of the intraluminal suture may be critical, and 1–2 mm of coating appeared to be optimal to produce consistent MCAO without involving the PCA territory. Laser speckle flowmetry could predict the territory of infarction and improve the consistency of the infarct size.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3