Advancing neurosurgery with image-guided robotics

Author:

Pandya Shawna,Motkoski Jason W.,Serrano-Almeida Cesar,Greer Alexander D.,Latour Isabelle,Sutherland Garnette R.

Abstract

Robotic systems are being introduced into surgery to extend human ability. NeuroArm represents a potential change in the way surgery is performed; this is the first image-guided, MR-compatible surgical robot capable of both microsurgery and stereotaxy. This paper presents the first surgical application of neuroArm in an investigation of microsurgical performance, navigation accuracy, and Phase I clinical studies. To evaluate microsurgical performance, 2 surgeons performed microsurgery (splenectomy, bilateral nephrectomy, and thymectomy) in a rodent model using neuroArm and conventional techniques. Two senior residents served as controls, using the conventional technique only (8 rats were used in each of the 3 treatment groups; the 2 surgeons each treated 4 rats from each group). Total surgery time, blood loss, thermal injury, vascular injury, and animal death due to surgical error were recorded and converted to an overall performance score. All values are reported as the mean ± SEM when normally distributed and as the median and interquartile range when not. Surgeons were slower using neuroArm (1047 ± 69 seconds) than with conventional microsurgical techniques (814 ± 54 seconds; p = 0.019), but overall performance was equal (neuroArm: 1110 ± 82 seconds; microsurgery: 1075 ± 136 seconds; p = 0.825). Using microsurgery, the surgeons had overall performance scores equal to those of the control resident surgeons (p = 0.141). To evaluate navigation accuracy, the localization error of neuroArm was compared with an established system. Nanoparticles were implanted at predetermined bilateral targets in a cadaveric model (4 specimens) using image guidance. The mean localization error of neuroArm (4.35 ± 1.68 mm) proved equal to that of the conventional navigation system (10.4 ± 2.79 mm; p = 0.104). Using the conventional system, the surgeon was forced to retract the biopsy tool to correct the angle of entry in 2 of 4 trials. To evaluate Phase I clinical integration, the role of neuroArm was progressively increased in 5 neurosurgical procedures. The impacts of neuroArm on operating room (OR) staff, hardware, software, and registration system performance were evaluated. NeuroArm was well received by OR staff and progressively integrated into patient cases, starting with draping in Case 1. In Case 2 and all subsequent cases, the robot was registered. It was used for tumor resection in Cases 3–5. Three incidents involving restrictive cable length, constrictive draping, and reregistration failure were resolved. In Case 5, the neuroArm safety system successfully mitigated a hardware failure. NeuroArm performs as well and as accurately as conventional techniques, with demonstrated safety technology. Clinical integration was well received by OR staff, and successful tumor resection validates the surgical applicability of neuroArm.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3