Estimation of growth fraction with bromodeoxyuridine in human central nervous system tumors

Author:

Yoshii Yoshihiko,Maki Yutaka,Tsuboi Koji,Tomono Yuji,Nakagawa Kunio,Hoshino Takao

Abstract

✓ Twenty-five patients with tumors of the central nervous system received bromodeoxyuridine (BUdR), 200 mg/sq m, by intravenous infusion every 8 hours for 3 days before surgery. Excised tumor specimens were fixed in chilled 70% ethanol, embedded in paraffin, and cut into 6-µm sections. Each section was reacted with monoclonal antibodies against BUdR and stained with immunoperoxidase to identify nuclei that had incorporated BUdR. The growth fraction of each tumor was estimated by calculating the ratio of BUdR-positive nuclei to the total number of tumor cells in three to six microscopic fields in viable areas of the tumor. In seven cases, the tumor doubling time was measured from the serial computerized tomography scans and an attempt was made to estimate the cell cycle time. The growth fractions ranged from 9.1% to 46.5% in malignant gliomas, 2.0% to 6.7% in low-grade gliomas, 11.2% to 43.2% in metastatic brain tumors, 0.8% to 1.9% in pituitary adenomas, 3.9% to 4.6% in acoustic neurinomas, and 6.2% to 8.2% in meningiomas and cerebellar hemangioblastomas. The estimated cell cycle time was 5 to 12 days in most malignant gliomas and brain metastases; however, the actual cell cycle time should be substantially shorter because cell loss was not considered in the calculation. Although the growth fraction appeared to correlate with the biological malignancy of each tumor, the tumor doubling time did not reflect growth potential. It is possible that unpredictable cell loss plays an important role in tumor growth at certain sizes. Therefore, the cell cycle times calculated in this study are considerably overestimated and should be interpreted with caution.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3