Impaction grafting of lumbar pedicle defects: a biomechanical study of a novel technique for pedicle screw revision

Author:

Shen Francis H.1,Hayward Gerald M.2,Harris Jonathan A.2,Gonzalez Jorge3,Thai Evan3,Raso Jon1,Van Horn Margaret R.2,Bucklen Brandon S.2

Affiliation:

1. Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia;

2. Musculoskeletal Education and Research Center, A Division of Globus Medical, Inc., Audubon, Pennsylvania; and

3. School of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, Pennsylvania

Abstract

OBJECTIVE The two most common revision options available for the management of loose pedicle screws are larger-diameter screws and cement augmentation into the vertebral body for secondary fixation. An alternative revision method is impaction grafting (pedicoplasty) of the failed pedicle screw track. This technique uses the impaction of corticocancellous bone into the pedicle and vertebral body through a series of custom funnels to reconstitute a new pedicle wall and a neomedullary canal. The goal of this study was to compare the biomechanics of screws inserted after pedicoplasty (impaction grafting) of a pedicle defect to those of an upsized screw and a cement-augmented screw. METHODS For this biomechanical cadaveric study the investigators used 10 vertebral bodies (L1–5) that were free of metastatic disease or primary bone disease. Following initial screw insertion, each screw was subjected to a pullout force that was applied axially along the screw trajectory at 5 mm per minute until failure. Each specimen was instrumented with a pedicoplasty revision using the original screw diameter, and on the contralateral side either a fenestrated screw with cement augmentation or a screw upsized by 1 mm was inserted in a randomized fashion. These revisions were then pulled out using the previously mentioned methods. RESULTS Initial screw pullout values for the paired upsized screw and pedicoplasty were 717 ± 511 N and 774 ± 414 N, respectively (p = 0.747) (n = 14). Revised pullout values for the paired upsized screw and pedicoplasty were 775 ± 461 N and 762 ± 320 N, respectively (p = 0.932). Initial pullout values for the paired cement augmentation and pedicoplasty were 792 ± 434 N and 880 ± 558 N, respectively (p = 0.649). Revised pullout values for the paired cement augmentation and pedicoplasty were 1159 ± 300 N and 687 ± 213 N, respectively (p < 0.001). CONCLUSIONS Pedicle defects are difficult to manage. Reconstitution of the pedicle and creation of a neomedullary canal appears to be possible through the use of pedicoplasty. Biomechanically, screws that have been used in pedicoplasty have equivalent pullout strength to an upsized screw, and have greater insertional torques than those with the same diameter that have not been used in pedicoplasty, yet they are not superior to cement augmentation. This study suggests that although cement augmentation appears to have superior pullout force, the novel pedicoplasty technique offers promise as a viable biological revision option for the management of failed pedicle screws compared with the option of standard upsized screws in a cadaveric model. These findings will ultimately need to be further assessed in a clinical setting.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

General Medicine

Reference19 articles.

1. Biomechanical evaluation of a novel fenestrated pedicle screw augmented with bone cement in osteoporotic spines;Paré PE,2011

2. A biomechanical cadaveric analysis of polymethylmethacrylate-augmented pedicle screw fixation;Frankel BM,2007

3. Restoration of pedicle screw fixation with an in situ setting calcium phosphate cement;Moore DC,1997

4. Augmentation of pedicle screw fixation strength using an injectable calcium phosphate cement as a function of injection timing and method;Renner SM,2004

5. Cortical bone trajectory for lumbar pedicle screws;Santoni BG,2009

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3