Requirement of longitudinal synchrony of epileptiform discharges in the hippocampus for seizure generation: a pilot study

Author:

Umeoka Shuichi C.1,Lüders Hans O.1,Turnbull John P.1,Koubeissi Mohamad Z.1,Maciunas Robert J.2

Affiliation:

1. Epilepsy Center, University Hospitals Neurological Institute; and

2. Department of Neurosurgery, Case Medical Center, Cleveland, Ohio

Abstract

Object The goal in this study was to assess the role of longitudinal hippocampal circuits in the generation of interictal and ictal activity in temporal lobe epilepsy (TLE) and to evaluate the effects of multiple hippocampal transections (MHT). Methods In 6 patients with TLE, the authors evaluated the synchrony of hippocampal interictal and ictal epileptiform discharges by using a cross-correlation analysis, and the effect of MHT on hippocampal interictal spikes was studied. Five of the 6 patients were studied with depth electrodes, and epilepsy surgery was performed in 4 patients (anterior temporal lobectomy in 1 and MHT in 3). Results Four hundred eighty-two (95.1%) of 507 hippocampal spikes showed an anterior-to-posterior propagation within the hippocampus, with a fixed peak-to-peak interval. During seizures, a significant increase of synchronization between different hippocampal regions and between the hippocampus and the ipsilateral anterior parahippocampal gyrus was observed in all seizures. An ictal increase in synchronization between the hippocampus and ipsilateral amygdala was seen in only 24.1% of the seizures. No changes in synchronization were noticed during seizures between the hippocampi and the amygdalae on either side. The structure leading the epileptic seizures varied over time during a given seizure and also from one seizure to another. Spike analysis during MHT demonstrated that there were two spike populations that reacted differently to this procedure—namely, 1) spikes that showed maximum amplitude at the head of the hippocampus (type H); and 2) spikes that showed the highest amplitude at the hippocampal body (type B). A striking decrease in amplitude and frequency of type B spikes was noticed in all 3 patients after transections at the head or anterior portion of the hippocampal body. Type H spikes were seen in 2 cases and did not change in amplitude and frequency throughout MHT. Type B spikes showed constantly high cross-correlation values in different derivations and a relatively fixed peak-to-peak interval before MHT. This fixed interpeak delay disappeared after the first transection, although high cross-correlation values persisted unchanged. All patients who underwent MHT remained seizure free for more than 2 years. Conclusions These data suggest that synchronized discharges involving the complete anterior-posterior axis of the hippocampal/parahippocampal (H/P) formation underlie the spread of epileptiform discharges outside the H/P structures and, therefore, for the generation of epileptic seizures originating in the H/P structures. This conclusion is supported by the following observations. 1) Hippocampal spikes are consistently synchronized in the whole hippocampal structures, with a fixed delay between the different hippocampal areas. 2) One or two transections between the head and body of the hippocampal formation are sufficient to abolish hippocampal spikes that are synchronized along the anterior-posterior axis of the hippocampus. 3) Treatment with MHT leads to seizure freedom in patients with H/P epilepsy.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3