Code-free machine learning for object detection in surgical video: a benchmarking, feasibility, and cost study

Author:

Unadkat Vyom12,Pangal Dhiraj J.2,Kugener Guillaume2,Roshannai Arman2,Chan Justin2,Zhu Yichao2,Markarian Nicholas2,Zada Gabriel2,Donoho Daniel A.3

Affiliation:

1. Department of Computer Science, USC Viterbi School of Engineering, Los Angeles, California;

2. Department of Neurosurgery, Keck School of Medicine of USC, Los Angeles, California; and

3. Division of Neurosurgery, Center for Neurosciences, Children’s National Hospital, Washington, DC

Abstract

OBJECTIVE While the utilization of machine learning (ML) for data analysis typically requires significant technical expertise, novel platforms can deploy ML methods without requiring the user to have any coding experience (termed AutoML). The potential for these methods to be applied to neurosurgical video and surgical data science is unknown. METHODS AutoML, a code-free ML (CFML) system, was used to identify surgical instruments contained within each frame of endoscopic, endonasal intraoperative video obtained from a previously validated internal carotid injury training exercise performed on a high-fidelity cadaver model. Instrument-detection performances using CFML were compared with two state-of-the-art ML models built using the Python coding language on the same intraoperative video data set. RESULTS The CFML system successfully ingested surgical video without the use of any code. A total of 31,443 images were used to develop this model; 27,223 images were uploaded for training, 2292 images for validation, and 1928 images for testing. The mean average precision on the test set across all instruments was 0.708. The CFML model outperformed two standard object detection networks, RetinaNet and YOLOv3, which had mean average precisions of 0.669 and 0.527, respectively, in analyzing the same data set. Significant advantages to the CFML system included ease of use, relatively low cost, displays of true/false positives and negatives in a user-friendly interface, and the ability to deploy models for further analysis with ease. Significant drawbacks of the CFML model included an inability to view the structure of the trained model, an inability to update the ML model once trained with new examples, and the inability for robust downstream analysis of model performance and error modes. CONCLUSIONS This first report describes the baseline performance of CFML in an object detection task using a publicly available surgical video data set as a test bed. Compared with standard, code-based object detection networks, CFML exceeded performance standards. This finding is encouraging for surgeon-scientists seeking to perform object detection tasks to answer clinical questions, perform quality improvement, and develop novel research ideas. The limited interpretability and customization of CFML models remain ongoing challenges. With the further development of code-free platforms, CFML will become increasingly important across biomedical research. Using CFML, surgeons without significant coding experience can perform exploratory ML analyses rapidly and efficiently.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Neurology (clinical),General Medicine,Surgery

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3