Predicting surgical decision-making in vestibular schwannoma using tree-based machine learning

Author:

Gadot Ron1,Anand Adrish1,Lovin Benjamin D.2,Sweeney Alex D.2,Patel Akash J.13

Affiliation:

1. Department of Neurosurgery, Baylor College of Medicine;

2. Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston; and

3. Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas

Abstract

OBJECTIVE Vestibular schwannomas (VSs) are the most common neoplasm of the cerebellopontine angle in adults. Though these lesions are generally slow growing, their growth patterns and associated symptoms can be unpredictable, which may complicate the decision to pursue conservative management versus active intervention. Additionally, surgical decision-making can be controversial because of limited high-quality evidence and multiple quality-of-life considerations. Machine learning (ML) is a powerful tool that utilizes data sets to essentialize multidimensional clinical processes. In this study, the authors trained multiple tree-based ML algorithms to predict the decision for active treatment versus MRI surveillance of VS in a single institutional cohort. In doing so, they sought to assess which preoperative variables carried the most weight in driving the decision for intervention and could be used to guide future surgical decision-making through an evidence-based approach. METHODS The authors reviewed the records of patients who had undergone evaluation by neurosurgery and otolaryngology with subsequent active treatment (resection or radiation) for unilateral VS in the period from 2009 to 2021, as well as those of patients who had been evaluated for VS and were managed conservatively throughout 2021. Clinical presentation, radiographic data, and management plans were abstracted from each patient record from the time of first evaluation until the last follow-up or surgery. Each encounter with the patient was treated as an instance involving a management decision that depended on demographics, symptoms, and tumor profile. Decision tree and random forest classifiers were trained and tested to predict the decision for treatment versus imaging surveillance on the basis of unseen data using an 80/20 pseudorandom split. Predictor variables were tuned to maximize performance based on lowest Gini impurity indices. Model performance was optimized using fivefold cross-validation. RESULTS One hundred twenty-four patients with 198 rendered decisions concerning management were included in the study. In the decision tree analysis, only a maximum tumor dimension threshold of 1.6 cm and progressive symptoms were required to predict the decision for treatment with 85% accuracy. Optimizing maximum dimension thresholds and including age at presentation boosted accuracy to 88%. Random forest analysis (n = 500 trees) predicted the decision for treatment with 80% accuracy. Factors with the highest variable importance based on multiple measures of importance, including mean minimal conditional depth and largest Gini impurity reduction, were maximum tumor dimension, age at presentation, Koos grade, and progressive symptoms at presentation. CONCLUSIONS Tree-based ML was used to predict which factors drive the decision for active treatment of VS with 80%–88% accuracy. The most important factors were maximum tumor dimension, age at presentation, Koos grade, and progressive symptoms. These results can assist in surgical decision-making and patient counseling. They also demonstrate the power of ML algorithms in extracting useful insights from limited data sets.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Neurology (clinical),General Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3