Adequacy of herniated disc tissue as a cell source for nucleus pulposus regeneration

Author:

Hegewald Aldemar A.12,Endres Michaela34,Abbushi Alexander5,Cabraja Mario5,Woiciechowsky Christian5,Schmieder Kirsten2,Kaps Christian4,Thomé Claudius1

Affiliation:

1. 1Department of Neurosurgery, Innsbruck Medical University, Innsbruck, Austria;

2. 2Department of Neurosurgery, Universitätsmedizin Mannheim, University of Heidelberg, Mannheim;

3. 3Tissue Engineering Laboratory, Department of Rheumatology, Charité-Universitätsmedizin Berlin;

4. 4TransTissue Technologies GmbH; and

5. 5Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Germany

Abstract

ObjectThe object of this study was to characterize the regenerative potential of cells isolated from herniated disc tissue obtained during microdiscectomy. The acquired data could help to evaluate the feasibility of these cells for autologous disc cell transplantation.MethodsFrom each of 5 patients (mean age 45 years), tissue from the nucleus pulposus compartment as well as from herniated disc was obtained separately during microdiscectomy of symptomatic herniated lumbar discs. Cells were isolated, and in vitro cell expansion for cells from herniated disc tissue was accomplished using human serum and fibroblast growth factor-2. For 3D culture, expanded cells were loaded in a fibrin-hyaluronan solution on polyglycolic acid scaffolds for 2 weeks. The formation of disc tissue was documented by histological staining of the extracellular matrix as well as by gene expression analysis of typical disc marker genes.ResultsCells isolated from herniated disc tissue showed significant signs of dedifferentiation and degeneration in comparison with cells from tissue of the nucleus compartment. With in vitro cell expansion, further dedifferentiation with distinct suppression of major matrix molecules, such as aggrecan and Type II collagen, was observed. Unlike in previous reports of cells from the nucleus compartment, the cells from herniated disc tissue showed only a weak redifferentiation process in 3D culture. However, propidium iodide/fluorescein diacetate staining documented that 3D assembly of these cells in polyglycolic acid scaffolds allows prolonged culture and high viability.ConclusionsStudy results suggested a very limited regenerative potential for cells harvested from herniated disc tissue. Further research on 2 major aspects in patient selection is suggested before conducting reasonable clinical trials in this matter: 1) diagnostic strategies to predict the regenerative potential of harvested cells at a radiological or cell biology level, and 2) clinical assessment strategies to elucidate the metabolic state of the targeted disc.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

General Medicine

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3