An aligned nanofiber nerve conduit that inhibits painful traumatic neuroma formation through regulation of the RhoA/ROCK signaling pathway

Author:

Zhou Xijie,Zhao Bin,Poonit Keshav,Weng Weidong,Yao Chenglun,Sun Chao,Yan Hede

Abstract

OBJECTIVETraumatic neuromas represent a prevalent source of neuropathic pain. As of yet, there has been no single treatment method that can guarantee permanent relief of symptoms. Although nerve-capping techniques have shown promise, their exact mechanisms remain elusive. The authors’ aim was to examine the role of the RhoA/ROCK signaling pathway in the prevention of neuroma formation after neurectomy utilizing a nerve-capping technique.METHODSAn aligned nanofiber tube was fabricated to cap the sciatic nerve in Sprague Dawley rats. The rats (n = 60) were randomly divided into the aligned SF/P (LLA-CL) capping group (capping group, n = 20), the capping and Y-27632 (ROCK pathway inhibitor) intervention group (intervention group, n = 20), and the no-capping group (control group, n = 20). The authors undertook a comprehensive assessment of the capping group, examining the animals’ behavior, the extent of neuroma development, histology, gene and protein expression, and ultrastructural changes associated with the RhoA/ROCK signaling pathway. These findings were compared with those in the intervention and control groups.RESULTSThe inciting injury resulted in the expression of the RhoA/ROCK signaling pathway, as well as its further upregulation in peripheral neurons. Axon outgrowth was significantly increased when RhoA/ROCK signaling pathway was suppressed. The average autotomy score in the capping group was observed to be much lower than that of the intervention and control groups. At 30 days postneurectomy, the capping group displayed no obvious neuroma formation, while a bulbous neuroma was found in the nerve stumps of both the control and intervention groups. Quantitative real-time polymerase chain reaction and the Western blot analysis demonstrated that the expression of myelin-associated glycoprotein was substantially upregulated in the capping group; in contrast, the expression of NF-200 was significantly downregulated. The expression of myosin light chain was notably lower in the intervention group, but there was no significant difference when compared with the control group (p > 0.05).CONCLUSIONSThe RhoA/ROCK signaling pathway has emerged as a critical player in the process of traumatic neuroma formation after neurectomy. It is possible that the nerve-capping technique could generate a “regenerative brake” based on the regulation of the RhoA/ROCK signaling pathway in this event. These findings may provide concrete evidence that could help develop new strategies for the management of painful neuromas.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3