Medical Insurance Cost Prediction MedCost: Machine Learning Ensemble Approaches

Author:

Emeç Murat1ORCID

Affiliation:

1. İstanbul Üniversitesi

Abstract

Healthcare insurance costs are a significant concern for individuals and providers. Accurately predicting these costs can assist in financial planning and risk assessment. This study explores machine learning ensemble methods to predict healthcare insurance costs based on various factors, including age, sex, body mass index (BMI), number of children, smoking status, and region. Additionally, new features were introduced by incorporating the mean and standard deviation of BMI and smoking habits, which are known to affect insurance costs substantially. The study began with a comprehensive statistical analysis of the dataset, followed by feature engineering to enhance its predictive power. Categorical variables such as sex, smoking status, and region were appropriately encoded. Two datasets were constructed: one containing all the original features, and the other containing the engineered features. Ensemble learning methods, including Bagging, Stacking, and the proposed MedCost-AdaBoost model, were employed to predict the insurance costs for both datasets. The results revealed that the MedCost-AdaBoost model outperformed the other methods in terms of lower Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) values, along with higher R-squared (R2) scores. These findings underscore the effectiveness of ensemble learning techniques in predicting healthcare insurance costs, with feature engineering playing a crucial role in improving prediction accuracy. Despite certain limitations, such as the dataset size, this study provides valuable insights for researchers and professionals in the healthcare insurance industry. Future research could explore additional factors and larger datasets to enhance the predictive models in this domain further.

Publisher

INESEG Yayincilik

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3