A Deep Learning Approach for Motor Fault Detection using Mobile Accelerometer Data

Author:

ERTARĞIN Merve1ORCID,GÜRGENÇ Turan2ORCID,YILDIRIM Özal2ORCID,ORHAN Ahmet2ORCID

Affiliation:

1. MUNZUR UNIVERSITY

2. FIRAT UNIVERSITY

Abstract

Electrical machines, which provide many conveniences in our daily life, may experience malfunctions that may adversely affect their performance and the general functioning of the industrial processes in which they are used. These failures often require maintenance or repair work, which can be expensive and time consuming. Therefore, minimizing the risk of malfunctions and failures and ensuring that these machines operate reliably and efficiently play a critical role for the industry. In this study, a one-dimensional convolutional neural network (1D-CNN) based fault diagnosis model is proposed for electric motor fault detection. Motor vibration data was chosen as the input data of the 1D-CNN model. Motor vibration data was obtained from a mobile application developed by using the three-axis accelerometer of the mobile phone. Three-axis data (X-axis, Y-axis and Z-axis) were fed to the model, both separately and together, to perform motor fault detection. The results showed that even a single axis data provides error-free diagnostics. With this fault detection method, which does not require any connection on or inside the motor, the fault condition in an electric motor has been detected with high accuracy.

Publisher

INESEG Yayincilik

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3