A skin-wearable and self-powered laminated pressure sensor based on triboelectric nanogenerator for monitoring human motion

Author:

Jan Agha Aamir,Kim Seungbeom,Kim Seok

Abstract

Flexible and skin-wearable triboelectric nanogenerators (TENGs) have emerged as promising candidates for self-powered tactile and pressure sensors and mechanical energy harvesters due to their compatible design and ability to operate at low frequencies. Most research has focused on improving tribo-negative materials for flexible TENGs, given the limited options for tribo-positive materials. Achieving biocompatibility while maintaining the sensitivity and capability of energy harvesting is another critical issue for wearable sensors. Here, we report a TENG-based biocompatible and self-powered pressure sensor by simple fabrication of layer-by-layer deposition methods. The Laminated Flexible-TENG comprises polytetrafluoroethylene (PTFE) and polymethyl methacrylate (PMMA) films embedded within a flexible and biocompatible polydimethylsiloxane (PDMS) matrix. A nanostructured PDMS surface obtained by oxygen plasma facilitated the sputter deposition of a layered indium tin oxide copper electrode and a tribo-positive PMMA thin layer on top. The addition of the indium tin oxide layer to copper significantly improved the quality and performance of the indium tin oxide-copper electrode. Self-powered Laminated Flexible-TENGs demonstrated impressive pressure-sensing capabilities, featuring dual sensitivity of 7.287 V/kPa for low pressure and 0.663 V/kPa for higher pressure. Moreover, the PDMS-encapsulated TENG sensor effectively traced the physiological motions, such as wrist and finger bending, and efficiently harnessed the waste energy from everyday physical activities, such as walking and jogging. The maximum peak-to-peak voltages of 18.3 and 57.4 V were recorded during these motions. Encapsulated TENGs have broad potential in wearable technology, including healthcare, human-machine interfaces, and energizing microelectronics.

Publisher

OAE Publishing Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3