Author:
Ma Yanmei,Wang Hongbo,Li Ruihong,Liu Han,Zhang Jian,Wang Xianyu,Jing Qiang,Wang Xu,Dong Wenping,Chen Jinman,Wu Bingze,Han Yonghao,Zhou Dan,Gao Chunxiao
Abstract
Owing to their unique compositional and structural characteristics, layered van der Waals solids in binary and ternary chalcogenide families provide a fertile testbed for exploring novel exotic structures and states, e.g., topological insulators and superconductors. Herein, a comprehensive study on the structural variations and correlated electrical transport behavior of SnSb2Te4, a ternary member, has been carried out considering elevated pressures. Under 45.6 GPa, three distinct structural phase transitions have been observed, with strong evidence from the variations of high-pressure X-ray diffraction patterns. The onsets of phase II (monoclinic, C2/m ) at 6.3 GPa, phase III (monoclinic, C2/c ) at 15.5 GPa, and phase IV (body-centered cubic with substitutional disorder, Im-3m ) at 17.2 GPa have been observed owing to the emergence of new diffractions. Based on electrical measurements at low temperature and high pressure conditions, two pressure-induced superconducting states have been distinguished in SnSb2Te4. The first state occurs in the range of 12.3-17.1 GPa. The positive pressure dependence on Tc indicates that the aforementioned state is related to the monoclinic C2/m phase. At > 17.1 GPa, the second superconducting state emerges, with the negative pressure dependence on Tc . It relates to the body-centered cubic solid solution phase, which is characteristic of a substitutional disordered crystal structure. The discovery that the pressure-induced superconductivity in SnSb2Te4 is affected by structural phase transitions under pressure may help understand the universal relationship between the ambient condition topological insulating state and derived superconductivity. Ab initio theoretical calculations reveal that an electronic topological transition takes place at approximately 2.0 GPa, which is featured by the obvious changes in the distribution of electronic density of states near the Fermi level.