Hierarchically structured biomaterials for tissue regeneration

Author:

Ma Wenping,Yang Zhibo,Lu Mingxia,Ma Hongshi,Wu Chengtie,Lu Hongxu

Abstract

Repairing tissue defects caused by diseases and traumas presents significant challenges in the clinic. Recent advancements in biomaterials have offered promising strategies for promoting tissue regeneration. In particular, the exploration of 3D macro and microstructures of biomaterials has proven crucial in this process. The integration of macro, micro, and nanostructures facilitates the performance of biomaterials in terms of their mechanical properties, degradation rate, and distinctive impacts on cellular activities. In this review, we summarize the recent progress in biomaterials with hierarchical structures for tissue regeneration. We explore the various methods and strategies employed in designing biomaterials with hierarchical structures of different dimensions. The improvement of physicochemical properties and bioactivities by hierarchically structured biomaterials, including the regulation of mechanical properties, degradability, and the specific functions of cell behaviors, has been highlighted. Furthermore, the current applications of hierarchically structured biomaterials for tissue regeneration are discussed. Finally, we conclude by summarizing the developments of hierarchically structured biomaterials for tissue regeneration and provide future perspectives.

Publisher

OAE Publishing Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3