Recent progress in graphitic carbon nitride-based materials for antibacterial applications: synthesis, mechanistic insights, and utilization

Author:

Zhang Xiaoyu,Wu Xinyu,Zhang Jian,Xu HuiyanORCID,Yu XinORCID

Abstract

Recent breakthroughs in graphitic carbon nitride (g-C3N4)-based materials have catalyzed the development of highly effective antibacterial strategies. This comprehensive review delves into the synthesis, mechanistic insights, and applications of g-C3N4 in the realm of antibacterial research. The introduction first highlights the importance of antibacterial materials, emphasizing the urgent need for innovative solutions in the face of bacterial infections and the escalating challenges posed by antibiotic resistance. Continuing, the structural attributes and distinctive characteristics of g-C3N4 are examined in detail, elucidating its inherent properties that make it a compelling candidate for antibacterial applications. Subsequently, we meticulously dissect various methods used in the synthesis of g-C3N4, encompassing both top-down and bottom-up approaches, offering valuable insights into the production of this promising nanomaterial. Furthermore, it delves deeper into the sterilization mechanisms of g-C3N4-based nanomaterials, encompassing a spectrum of strategies, including physical structure sterilization, photocatalytic antibacterial effects, enzymatic antibacterial processes, and the synergetic benefits that emerge from the fusion of these mechanisms. Then, it comprehensively examines the practical applications of g-C3N4-based nanomaterials in antibacterial endeavors, encompassing their pivotal roles in water purification, air purification, treatment of bacterial infections, and the development of antibacterial layers in diverse settings. In conclusion, we encapsulate the crux of our findings and provide a forward-looking perspective on the potential challenges and opportunities in the arena of g-C3N4-based materials for antibacterial applications. This review aspires to galvanize further exploration and innovation in the design of high-performance g-C3N4-based materials, thereby contributing to the progression of antibacterial solutions.

Publisher

OAE Publishing Inc.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3