Recent advances in access to overcome cancer drug resistance by nanocarrier drug delivery system

Author:

Sun Xiangyu,Zhao Ping,Lin Jierou,Chen Kun,Shen Jianliang

Abstract

Cancer is currently one of the most intractable diseases causing human death. Although the prognosis of tumor patients has been improved to a certain extent through various modern treatment methods, multidrug resistance (MDR) of tumor cells is still a major problem leading to clinical treatment failure. Chemotherapy resistance refers to the resistance of tumor cells and/or tissues to a drug, usually inherent or developed during treatment. Therefore, an urgent need to research the ideal drug delivery system to overcome the shortcoming of traditional chemotherapy. The rapid development of nanotechnology has brought us new enlightenments to solve this problem. The novel nanocarrier provides a considerably effective treatment to overcome the limitations of chemotherapy or other drugs resulting from systemic side effects such as resistance, high toxicity, lack of targeting, and off-target. Herein, we introduce several tumor MDR mechanisms and discuss novel nanoparticle technology applied to surmount cancer drug resistance. Nanomaterials contain liposomes, polymer conjugates, micelles, dendrimers, carbon-based, metal nanoparticles, and nucleotides which can be used to deliver chemotherapeutic drugs, photosensitizers, and small interfering RNA (siRNA). This review aims to elucidate the advantages of nanomedicine in overcoming cancer drug resistance and discuss the latest developments.

Publisher

OAE Publishing Inc.

Subject

Pharmacology (medical),Cancer Research

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3