Review on Fe-based double perovskite cathode materials for solid oxide fuel cells

Author:

Xie ManyiORCID,Cai Changkun,Duan Xingyu,Xue Ke,Yang Hong,An Shengli

Abstract

As a clean and efficient energy conversion device, solid oxide fuel cells have been garnering attention due to their environmentally friendly and fuel adaptability. Consequently, they have become one of the current research directions of new energy. The cathode, as the electrochemical reaction site of an oxidation atmosphere in solid oxide fuel cells, plays a key role in determining the output performance. In recent years, the development of double perovskite cathode materials with mixed ionic and electronic conductors has made significant progress in intermediate-temperature (600-800 °C) fuel cells. These materials have the potential to deliver higher power densities and improved stability, making them promising candidates for future fuel cell applications. The Fe-based double perovskite structure cathode material has gained extensive attention due to its adjustable crystal structure and performance, as it has A(A’) or B(B’) positions in its AA’BB’O6 structure. This material has several advantages, such as high oxygen catalytic activity, low thermal expansion coefficient, and compatibility with the thermal expansion of the electrolyte. An increasing number of researchers have been exploring the performance reaction mechanism of double perovskite by modifying and adjusting its material microstructure, crystal structure, and electronic structure. In this paper, the research progress of LnBaFe2O5 and Sr2Fe2-xMoxO6 double perovskite cathode materials is reviewed to highlight the effects of various modification methods developed on electrochemical performance of these materials. Furthermore, the potential future research directions of double perovskite cathode materials are prospected.

Publisher

OAE Publishing Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3