Day-of-Week, Month, and Seasonal Demand Variations: Comparing Flow Estimates Across New Travel Data Sources

Author:

Mori Kentaro1ORCID,Kockelman Kara1ORCID

Affiliation:

1. The University of Texas at Austin

Abstract

Transportation planners and engineers are increasingly interested in incorporating demand variations into travel models. Regression models are used to predict and compare variations in permanent traffic recorder (PTR) counts along Texas highways to vehicle-kilometers traveled (VKT) inferred from INRIX’s probe-vehicle data across days of the year. Results suggest INRIX data do not illuminate month-of-year variations in network use, due to random or unexpected shifts in sampling rates, but significant day-of-week differences are clear in both. Furthermore, INRIX appears to capture much more light-duty-vehicle travel than PTRs on Saturdays, but this may be due to location-based services’ over-counting of vehicles carrying multiple mobile devices and/or PTRs’ highway-site bias.

Publisher

Network Design Lab - Transport Findings

Reference14 articles.

1. Regional Integrated Transportation Information System (RITIS);Center For Advanced Transportation Technology,2024

2. National Household Travel Survey;Federal Highway Administration,2023

3. Estimates of AADT: Quantifying the uncertainty;S. Gadda,2007

4. Fixed effects models;L. V. Hedges,1994

5. Agent-based simulations of shared automated vehicle operations: reflecting travel-party size, season and day-of-week demand variations;Y. Huang;Transportation,2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3