A Ring Walk of Methylene Groups in Toluene Radical Cations. An Extension of the Toluene-Cycloheptatriene Rearrangement of Aromatic Radical Cations. Theory and Experiment

Author:

Grützmacher Hans-Friedrich1,Harting Natascha1

Affiliation:

1. Fakultät für Chemie der Universität Bielefeld, Postfach 10 01 31, D-33501 Bielefeld, Germany

Abstract

The minimum energy reaction pathway (MERP) of the toluene-cycloheptatriene radical cation rearrangement (TOL/CHT-rearrangement) has been calculated by the UHF and DFT model at the level UHF/6-311+G(3df,2p)//UHF/6-31G(d) and B3LYP/6-311+G(3df,2p)//B3LYp/6-31G(d), respectively, including the ring walk of the substituent by a 1,2-shift around the aromatic ring. This ring walk corresponds to interconversion of distonic ions and norcaradiene radical cations (the two intermediates of the TOL/CHT-rearrangement) by making and breaking of the external C–C bonds of the cyclopropane moiety of the intermediate norcaradiene structure. For toluene radical cation 1, UHF calculations adequately reproduce earlier results4 and show, that the ring walk of the CH3-substituents requires slightly more energy than formation of the cycloheptatriene radical cation. By the DFT model, the distonic ion, which is formed initially by a 1,2-H shift from CH3 to the benzene ring, is not stable but the transition state of an interconversion of norcaradiene radical cations along a ring walk of the CH3 substituent. The activation energy for this ring walk exceeds that for formation of the cycloheptatriene radical cation by c. 30 kJ mol−1. Thus, isomerization of 1 by a ring walk of the CH3-substituent competes with the TOL/CHT-rearrangement likely only for excited 1. The calculation was repeated for the MERPs of a TOL/CHT-rearrangement of para-xylene radical cation 5 and ethylbenzene radical cation 2, yielding basically the same results as for 1. According to the calculation, polar substituents alter significantly the relative energies of the competing routes of isomerization. For benzylcyanide 3 (X = CN), the activation energy for a ring walk of the NC–CH2-substituent is distinctly below that of a ring enlargement. For benzyl methyl ether 4 (X = OCH3), the distonic intermediate along the UHF-MERP is unusually stable. Further, the 7-methoxy-norcaradiene radical ion is unstable and corresponds to a transition state between isomeric distonic intermediates differing by a 1,2-shift of the side chain. In contrast, the 7-methoxy-norcaradiene radical ion is the only intermediate of the DFT-MERP, and the distonic ion is the transition state for a 1,2-shift of the cyclopropane ring. A ring walk of the CH3OCH2-substituent is much more favorable than formation of a 7-methoxy-cycloheptatriene radical cation in both MERPs. The findings of the theoretical calculation are substantiated by the mass spectrometric fragmentations of meta- and para-methoxymethylated 1-phenylethanols 8 and 9 and of para-methoxymethyl substituted benzyl ethyl ether 10 and benzyl n-propyl ether 11. Important fragmentation routes of metastable molecular ions of these compounds correspond to elimination of alcohols. Use of deuterated derivatives shows that the elimination occurs by a “false” ortho-effect which requires migration of a ROCH2-substituent around the benzene ring. Results of particular interest are obtained for the asymmetric bis-ethers 10 and 11. Here, the MIKE spectra of the molecular ions of deuterated analogs reveal a selective ring walk of the C2H5OCH2- and n-C3H7OCH2-side chain, respectively.

Publisher

SAGE Publications

Subject

Spectroscopy,Atomic and Molecular Physics, and Optics,General Medicine

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3