Quality Estimation of Agave Tequilana Leaf for Bioethanol Production

Author:

Rijal Deepa1,Walsh Kerry B.1,Subedi Phul P.1,Ashwath Nanjappa1

Affiliation:

1. Central Queensland University, School of Medical and Applied Sciences, Rockhampton, 4702, Queensland, Australia

Abstract

Agave tequilana is a potential biofuel crop, for which the characters of juice total soluble sugar content (TSS), dry matter content (DM), cellulose, hemicellulose and lignin content are quality criteria. Spectra of leaves were obtained using a hand-held silicon photodiode array (Si PDA)-based spectrometer with a wavelength range of 300–1100 nm and an InGaAs-based Fourier transform near infrared (FT-NIR) spectrometer with a wavelength range of 1100–2500 nm. Fresh leaves were harvested at different maturity stages, in different seasons and from two locations in Queensland during 2012–2014. Partial least square regression models were developed for DM and TSS of fresh leaf, and for cellulose, hemicellulose and lignin of dried material, with models tested on populations of independent samples collected in different years, seasons and locations. Prediction statistics for DM of fresh leaf using the Si PDA spectrometer (729–975 nm) were r2 = 0.49–0.87 and root mean square error of prediction ( RMSEP) = 2.36–1.44%, while with the use of the FT-NIR spectrometer, the prediction statistics were r2 = 0.53–0.66 and RMSEP = 2.63–2.18% (across different years, seasons and locations). Prediction statistics for TSS in fresh leaf using the Si PDA spectrometer (729–975 nm) were r2 = 0.53–0.69 and RMSEP = 1.70–1.91%, with poorer results obtained using the FT-NIR spectrometer ( r2 = 0.33–0.56; RMSEP = 1.88–2.45%). With increased sample diversity in the calibration set, NIR technology is recommended for estimation of DM and TSS in fresh Agave leaves. FT-NIR-based prediction of cellulose, hemicellulose or lignin of independent sets (of different years or cultivars) was unsatisfactory, with r2 < 0.75 and bias >10% of mean. These results may be improved with increased sample range, and attention to laboratory (reference method) error. However, leaf cellulose and hemicellulose content may be more easily estimated through correlation to leaf DM level ( R2 of 0.77 across all sampling events).

Publisher

SAGE Publications

Subject

Spectroscopy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3