Two-Photon near Infrared Excitation in Living Cells

Author:

König Karsten1

Affiliation:

1. Institute of Anatomy II, Friedrich Schiller University Jena, D-07743 Jena, Germany

Abstract

Non-linear effects due to two-photon near infrared (NIR) excitation of endogenous and exogenous cellular chromophores allow novel techniques in tissue, cell and biomolecule diagnostics, as well as in intracellular micromanipulation (e.g. intracellular photochemistry). Two-photon NIR excitation may also result in cell damage effects. The high photon intensities (1024 photons cm−2 s−1) required for non-resonant two-photon excitation can be achieved by diffraction-limited focusing of continuous wave (cw) laser beams (cw microbeams) with powers in the mW range. For example, NIR traps (“laser tweezers”) used as force transducers and micromanipulation tools in cellular and molecular biology are sources of two-photon excitation. NIR traps can induce two-photon excited visible fluorescence and, in the case of <800 nm-traps, UVA-like cell damage. Multimode cw microbeams may enhance non-linear effects due to longitudinal mode-beating. To perform high scan rate two-photon fluorescence imaging, the application of ultrashort laser pulses of moderate peak power but low average power (pulsed microbeams) is required. In NIR femtosecond microscopes, non-destructive imaging of two-photon excited fluorophores in various human and culture cells was demonstrated for <2 mW average powers, <200 mW peak powers and 400 GW cm−2 intensities (700–800 nm, ∼150 fs, ∼100 MHz). However, higher average power levels may result in failed cell reproduction and cell death due to intracellular optical breakdown. In addition, destructive transient local heating and μN force generation may occur.

Publisher

SAGE Publications

Subject

Spectroscopy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3