Robustness of Models Based on near Infrared Spectra to Predict the Basic Density in Eucalyptus Urophylla Wood

Author:

Hein Paulo Ricardo Gherardi1,Lima José Tarcísio2,Chaix Gilles3

Affiliation:

1. CIRAD —PERSYST Department, 73 rue Jean-François Breton TA B-40/16, 34398 Mont pettier Cedex 5, France

2. Ciěncia e Tecnologia da Madeira, Departamento de Ciěncias Florestais, Universidade Federal de Lavras, Campus Universitário, Lavras, Minas Gerais, Brazil, CEP 37200-000

3. CIRAD—BIOS Department, 73 rue Jean-Francois Breton TA A-39, 34398 Montpellier Cedex 5, France

Abstract

Scientific contributions have shown good results by using near infrared (NIR) spectroscopy as a rapid and reliable tool for characterising lignocellulosic materials. Many reports have evaluated the predictive power and the robustness of the NIR models by means of methods known to validate them. However, in most of these investigations, the samples were divided systematically into two non-independent groups: one group was used to build and the other to validate the NIR models. This approach does not adequately simulate a real situation in which the properties of unknown samples should be predicted by established NIR models. Hence, the aim of this paper was to evaluate the robustness of models based on NIR spectroscopy to predict wood basic density in Eucalyptus urophylla using two totally independent sample sets. Wood density and NIR spectra were measured in diffuse reflectance mode on transversal, radial and tangential surfaces of wood samples in two data sets. We used one data set to build partial least squares regression (PLS-R) models and another to validate them and vice versa. The predictive models developed from the radial surface NIR spectra proved satisfactory with r2 p varying from 0.79 to 0.85 and RPD ranging from 2.3 to 2.7, while the spectra measured on tangential and transversal wood surfaces generated less robust regression models. Our results showed that it is possible to assess wood density in unknown samples by established PLS-R models from solid wood samples preferably using radial surfaces.

Publisher

SAGE Publications

Subject

Spectroscopy

Reference57 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3