Detection of Offal Adulteration in Beefburgers Using near Infrared Reflectance Spectroscopy and Multivariate Modelling

Author:

Zhao Ming1,O'Donnell Colm P.2,Downey Gerard1

Affiliation:

1. Teagasc Food Research Centre Ashtown, Ashtown, Dublin 15, Ireland

2. School of Biosystems Engineering, University College Dublin, Belfield, Dublin 4, Ireland

Abstract

The main aim of this study was to develop a rapid and reliable tool using near infrared (NIR) reflectance spectroscopy to confirm beefburger authenticity in the context of offal (kidney, liver, heart and lung) adulteration. An experimental design was used to develop beef burger formulations to simultaneously maximise the variable space describing offal-adulterated samples and minimise the number of experiments required. Authentic ( n = 36) and adulterated ( n = 46) beefburger samples were produced using these formulations. Classification models (partial least squares discriminant analysis, PLS1-DA) and class-modelling tools (soft independent modelling of class analogy, SIMCA), were developed using raw and pre-treated NIR reflectance spectra (850–1098nm wavelength range) to detect authentic and adulterated beefburgers in (1) fresh, (2) frozen-then-thawed and (3) fresh or frozen-then-thawed states. In the case of authentic samples, the best PLS1-DA models achieved 100% correct classification for fresh, frozen-then-thawed and fresh or frozen-then-thawed samples. SIMCA models correctly identified all the fresh samples but not all the frozen-then-thawed and fresh or frozen-then-thawed samples. For the adulterated samples, PLS1-DA models correctly classified 95.5% of fresh, 91.3% of frozen-then-thawed and 88.9% of fresh or frozen-then-thawed beefburgers. SIMCA models exhibited specificity values of 1 for both fresh and frozen-then-thawed samples, 0.99 for fresh or frozen-then-thawed samples; sensitivity values of 1, 0.88 and 0.97 were obtained for fresh, frozen-then-thawed and fresh or frozen-then-thawed products, respectively. Quantitative models (PLS1 regression) using both 850–1098nm and 1100–2498 nm wavelength ranges were developed to quantify (1) offal adulteration and (2) added fat in adulterated beefburgers, both fresh and frozen-then-thawed. Models predicted added fat in fresh samples with acceptable accuracy ( RMSECV=2.0; RPD=5.9); usefully accurate predictions of added fat in frozen-then-thawed samples were not obtained nor was prediction of total offal possible in either sample form.

Publisher

SAGE Publications

Subject

Spectroscopy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3