Detection and Quantification of Sugar and Glucose Syrup in Roasted Green Tea Using near Infrared Spectroscopy

Author:

Luqing Li1,Lingdong Wei1,Jingming Ning1,Zhengzhu Zhang1

Affiliation:

1. State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 210036, China

Abstract

The adulteration of roasted green tea by sugar and glucose syrup increases the risk of moisture sensitivity and microbiological hazards in tea products and is considered to be an illegal business operation. The analytical method of high-performance liquid chromatography, which is commonly used for the detection of sugar and glucose syrup, has high specificity and sensitivity, but it is time-consuming and requires highly skilled operators. In this study, near infrared (NIR) spectroscopy combined with multivariate calibration was employed to detect and quantitatively analyse sugar and glucose syrup in roasted green tea. An orthogonal experimental design, sample preprocessing, partial least squares (PLS) models and qualitative models were systemically utilised when developing the method. The model was optimised using leave-one-out cross-validation, and its performance was tested according to root mean square error of prediction and correlation coefficient of determination for the prediction set samples. To reduce heterogeneity, tea samples were ground and homogenised before spectra were acquired. The repeatability of spectra was optimised when the powder particle size was 40–60 mesh, the pressure was 40 MPa and sample cakes had a thickness of 4 mm. PLS models of the sugar and glucose syrup (adulterants) were established under cross-validation and tested with an independent set of samples, yielding coefficients of determination of 0.998, 0.996 and 0.996, 0.998 for sugar and glucose syrup, respectively. The corresponding values for the root mean square error of calibration and prediction were found to be 0.31% and 0.43% for sugar and 0.41% and 0.30% for glucose syrup, respectively. The identification accuracies for these adulterants in roasted green tea were up to 96% and 100%, respectively. These results reveal the feasibility of using NIR spectroscopy for the detection and quantification of adulterants (sugar and glucose syrup) in roasted green tea with acceptable accuracy.

Publisher

SAGE Publications

Subject

Spectroscopy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3