Rapid Determination of Alkalinity (Ammonia Content) in Para Rubber Latex Using Portable and Fourier Transform-Near Infrared Spectrometers

Author:

Narongwongwattana Sureeporn1,Rittiron Ronnarit1,Hock Lim Chin2

Affiliation:

1. Department of Food Engineering, Faculty of Engineering at Kamphaengsaen, Kasetsart University, Nakhonpathom, 73140, Thailand

2. Thai Rubber Latex Corporation (Thailand) Public Company Limited, Chonburi, 20190, Thailand

Abstract

Ammonia (NH3) is the main preservative that is added to field and concentrated latices to prevent the deterioration of properties and, in serious cases, coagulation of latex. Almost all factories monitor NH3 content or alkalinity during processing, as it is an important parameter for trading purposes. Alkalinity is determined by the standard analytical method, acid-based titration, as detailed in ISO 125:2011(E) Natural Rubber Latex Concentrate – Determination of Alkalinity. This method requires a skilled analyst and also the use of chemicals. In addition, the titration involves the subjective determination of the end-point, which may vary with each analyst. Near infrared (NIR) spectroscopy, a rapid, non-chemical and repeatable method, was used in this work. Calibration equations for predicting alkalinity were constructed from the relationship between the absorbance spectra of latex (measured using a portable NIR and a Fourier transform (FT)-NIR spectrometer) and the alkalinity content of the latex. It was found that the best equation obtained using the portable and the FT-NIR spectrometer could be used to predict alkalinity in latex with a coefficient of determination, standard error of prediction and ratio of standard error of validation to the standard deviation of 0.63, 0.101% and 1.62, and 0.97, 0.027% and 6.07, respectively. From the statistics testing for performance measurement as detailed in ISO12099:2010, NIR-predicted values were no different from actual values at the 95% confident interval. Moreover, the best equation obtained from the more reliable calibration achieved using the FT-NIR spectrometer is attributed to the longer wavelength range.

Publisher

SAGE Publications

Subject

Spectroscopy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3