This chapter studies the topological entropy h of postcritically finite one-dimensional maps and, in particular, the relations between dynamics and arithmetics of eʰ, presenting some constructions for maps with given entropy and characterizing what values of entropy can occur for postcritically finite maps. In particular, the chapter proves: h is the topological entropy of a postcritically finite interval map if and only if h = log λ, where λ ≥ 1 is a weak Perron number, i.e., it is an algebraic integer, and λ ≥ ∣λsuperscript Greek Small Letter Sigma∣ for every Galois conjugate λsuperscript Greek Small Letter Sigma ∈ C. Unfortunately, the author of this chapter has died before completing this work, hence this chapter contains both the original manuscript as well as a number of notes which clarify many of the points mentioned therein.