Research on Micro-Turbine Operating State Characterization Based on Bearing Vibration Signals Analysis

Author:

Li Ning,Wang Xiaowei,Yang Tongguang,Han Qingkai

Abstract

An air flow-driven micro-turbine, widely used in air-condition control systems in aircraft cabins, train coaches, etc., exhibits complex vibration behaviors under stable or unstable inlet flow conditions, and especially has a certain correlation with speeds. In this paper, the vibration responses of the micro-turbine undergoing stable and unstable inlet flows measured on a test rig are analyzed and compared by using different signal processing methods, which include time and frequency domain methods, and statistical and nonlinear methods. First, the test rig system of the airflow-driven micro-turbine, the instrument system and four typical experimental cases are introduced. Then the measured vibration signals are analyzed and compared by time domain characteristic parameters (peak-to-peak value, RMS value and kurtosis value), statistical parameters (auto-correlation and BDS), and amplitude spectra in the frequency domain, statistic spectrum indicators (SSI) based on Welch's periodogram of power spectra, and the spectra of selected IMF components based on Hilbert-Huang Transform (HHT). In particular, some nonlinear feature analyzing methods, including Pseudo-Poincare mapping diagrams and Lempel-Ziv(LZ) complexity, are also used for analyzing measured vibration responses. The obtained results using the above multiple methods are compared and show that, when the inlet flow of the turbine fluctuates significantly, the nonlinear characteristics of the turbine bearings are significantly higher than those of the relatively stable inlet flow and speed conditions. Under these circumstances, commonly used time-frequency analysis methods cannot characterize the different speed operating state of the turbine, and LZ-Complexity and other nonlinear characterization methods should be used to better understand the characteristics of different speeds under unstable conditions.This study provides references for the aerodynamic stability monitoring of the micro-turbine and its design improvement.

Publisher

International Institute of Acoustics and Vibration (IIAV)

Subject

General Medicine,General Earth and Planetary Sciences,General Environmental Science,General Medicine,Ocean Engineering,General Medicine,General Medicine,General Medicine,General Medicine,General Earth and Planetary Sciences,General Environmental Science,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intelligent system for monitoring the operational properties of ship power equipment;Reporter of the Priazovskyi State Technical University. Section: Technical sciences;2024-06-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3