Mechanism Design of Health Care Blockchain System Token Economy: Development Study Based on Simulated Real-World Scenarios

Author:

Jung Se YoungORCID,Kim TaehyunORCID,Hwang Hyung JuORCID,Hong KyungpyoORCID

Abstract

Background Despite the fact that the adoption rate of electronic health records has increased dramatically among high-income nations, it is still difficult to properly disseminate personal health records. Token economy, through blockchain smart contracts, can better distribute personal health records by providing incentives to patients. However, there have been very few studies regarding the particular factors that should be considered when designing incentive mechanisms in blockchain. Objective The aim of this paper is to provide 2 new mathematical models of token economy in real-world scenarios on health care blockchain platforms. Methods First, roles were set for the health care blockchain platform and its token flow. Second, 2 scenarios were introduced: collecting life-log data for an incentive program at a life insurance company to motivate customers to exercise more and recruiting participants for clinical trials of anticancer drugs. In our 2 scenarios, we assumed that there were 3 stakeholders: participants, data recipients (companies), and data providers (health care organizations). We also assumed that the incentives are initially paid out to participants by data recipients, who are focused on minimizing economic and time costs by adapting mechanism design. This concept can be seen as a part of game theory, since the willingness-to-pay of data recipients is important in maintaining the blockchain token economy. In both scenarios, the recruiting company can change the expected recruitment time and number of participants. Suppose a company considers the recruitment time to be more important than the number of participants and rewards. In that case, the company can increase the time weight and adjust cost. When the reward parameter is fixed, the corresponding expected recruitment time can be obtained. Among the reward and time pairs, the pair that minimizes the company’s cost was chosen. Finally, the optimized results were compared with the simulations and analyzed accordingly. Results To minimize the company’s costs, reward–time pairs were first collected. It was observed that the expected recruitment time decreased as rewards grew, while the rewards decreased as time cost grew. Therefore, the cost was represented by a convex curve, which made it possible to obtain a minimum—an optimal point—for both scenarios. Through sensitivity analysis, we observed that, as the time weight increased, the optimized reward increased, while the optimized time decreased. Moreover, as the number of participants increased, the optimization reward and time also increased. Conclusions In this study, we were able to model the incentive mechanism of blockchain based on a mechanism design that recruits participants through a health care blockchain platform. This study presents a basic approach to incentive modeling in personal health records, demonstrating how health care organizations and funding companies can motivate one another to join the platform.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

Reference46 articles.

1. Towards precision medicine

2. The “All of Us” Research Program

3. Stimulating the Adoption of Health Information Technology

4. HITECH Act Drove Large Gains In Hospital Electronic Health Record Adoption

5. Percent of specialty hospitals that possess certified health ITThe Office of the National Coordinator for Health Information Technology2020-02-13https://dashboard.healthit.gov/quickstats/pages/specialty-hospital-ehr-adoption.php

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advancing Customer Feedback Systems with Blockchain;Business & Information Systems Engineering;2024-06-10

2. Public Health Informatics and the Perioperative Physician: Looking to the Future;Anesthesia & Analgesia;2024-01-12

3. Health;Mechanism Design, Behavioral Science and Artificial Intelligence in International Relations;2024

4. Blockchain-Based Governance Models Supporting Corruption-Transparency: A Systematic Literature Review;Blockchain: Research and Applications;2023-12

5. Non-fungible token integration in neurosurgery: a technical review;Neurosurgical Review;2023-08-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3