Using Magnetic Resonance Imaging During Childbirth to Demonstrate Fetal Head Moldability and Brain Compression: Prospective Cohort Study

Author:

Ami OlivierORCID,Maran Jean-ChristopheORCID,Musset Dominique,Dubray ClaudeORCID,Mage Gérard,Boyer LouisORCID

Abstract

Background Childbirth is a physiological process with significant medical risk, given that neurological impairment due to the birthing process can occur at any time. Improvements in risk assessment and anticipatory interventions are constantly needed; however, the birthing process is difficult to assess using simple imaging technology because the maternal bony pelvis and fetal skeleton interfere with visualizing the soft tissues. Magnetic resonance imaging (MRI) is a noninvasive technique with no ionizing radiation that can monitor the biomechanics of the birthing process. However, the effective use of this modality requires teamwork and the implementation of the appropriate safeguards to achieve appropriate safety levels. Objective This study describes a clinically effective and safe method to perform real-time MRI during the birthing process. We reported the experience of our team as part of the IMAGINAITRE study protocol (France), which aimed to better understand the biomechanics of childbirth. Methods A total of 27 pregnant women were examined with 3D MRI sequences before going into labor using a 1-Tesla open-field MRI. Of these 27 patients, 7 (26%) subsequently had another set of 3D MRI sequences during the second stage of labor. Volumes of 2D images were transformed into finite element 3D reconstructions. Polygonal meshes for each part of the fetal body were used to study fetal head moldability and brain compression. Results All 7 observed babies showed a sugarloaf skull deformity and brain compression at the middle strait. The fetus showing the greatest degree of molding and brain shape deformation weighed 4525 g and was born spontaneously but also presented with a low Apgar score. In this case, observable brain shape deformation demonstrated that brain compression had occurred, and it was not necessarily well tolerated by the fetus. Depending on fetal head moldability, these observations suggest that cephalopelvic disproportion can result in either obstructed labor or major fetal head molding with brain compression. Conclusions This study suggests the presence of skull moldability as a confounding factor explaining why MRI, even with the best precision to measure radiological landmarks, fails to accurately predict the modality of childbirth. This introduces the fetal head compliance criterion as a way to better understand cephalopelvic disproportion mechanisms in obstetrics. MRI might be the best imaging technology by which to explore all combined aspects of cephalopelvic disproportion and achieve a better understanding of the underlying mechanisms of fetal head molding and moldability.

Publisher

JMIR Publications Inc.

Subject

Health Informatics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3