Migrating a Well-Established Longitudinal Cohort Database From Oracle SQL to Research Electronic Data Entry (REDCap): Data Management Research and Design Study

Author:

Kusejko KatharinaORCID,Smith DanielORCID,Scherrer AlexandraORCID,Paioni PaoloORCID,Kohns Vasconcelos MalteORCID,Aebi-Popp KarolineORCID,Kouyos Roger DORCID,Günthard Huldrych FORCID,Kahlert Christian RORCID,

Abstract

Background Providing user-friendly electronic data collection tools for large multicenter studies is key for obtaining high-quality research data. Research Electronic Data Capture (REDCap) is a software solution developed for setting up research databases with integrated graphical user interfaces for electronic data entry. The Swiss Mother and Child HIV Cohort Study (MoCHiV) is a longitudinal cohort study with around 2 million data entries dating back to the early 1980s. Until 2022, data collection in MoCHiV was paper-based. Objective The objective of this study was to provide a user-friendly graphical interface for electronic data entry for physicians and study nurses reporting MoCHiV data. Methods MoCHiV collects information on obstetric events among women living with HIV and children born to mothers living with HIV. Until 2022, MoCHiV data were stored in an Oracle SQL relational database. In this project, R and REDCap were used to develop an electronic data entry platform for MoCHiV with migration of already collected data. Results The key steps for providing an electronic data entry option for MoCHiV were (1) design, (2) data cleaning and formatting, (3) migration and compliance, and (4) add-on features. In the first step, the database structure was defined in REDCap, including the specification of primary and foreign keys, definition of study variables, and the hierarchy of questions (termed “branching logic”). In the second step, data stored in Oracle were cleaned and formatted to adhere to the defined database structure. Systematic data checks ensured compliance to all branching logic and levels of categorical variables. REDCap-specific variables and numbering of repeated events for enabling a relational data structure in REDCap were generated using R. In the third step, data were imported to REDCap and then systematically compared to the original data. In the last step, add-on features, such as data access groups, redirections, and summary reports, were integrated to facilitate data entry in the multicenter MoCHiV study. Conclusions By combining different software tools—Oracle SQL, R, and REDCap—and building a systematic pipeline for data cleaning, formatting, and comparing, we were able to migrate a multicenter longitudinal cohort study from Oracle SQL to REDCap. REDCap offers a flexible way for developing customized study designs, even in the case of longitudinal studies with different study arms (ie, obstetric events, women, and mother-child pairs). However, REDCap does not offer built-in tools for preprocessing large data sets before data import. Additional software is needed (eg, R) for data formatting and cleaning to achieve the predefined REDCap data structure.

Publisher

JMIR Publications Inc.

Subject

Health Informatics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3