Detecting Medication-Taking Gestures Using Machine Learning and Accelerometer Data Collected via Smartwatch Technology: Instrument Validation Study (Preprint)

Author:

Odhiambo Chrisogonas OderoORCID,Ablonczy LukacsORCID,Wright Pamela JORCID,Corbett Cynthia FORCID,Reichardt SydneyORCID,Valafar HomayounORCID

Abstract

BACKGROUND

Medication adherence is a global public health challenge, as only approximately 50% of people adhere to their medication regimens. Medication reminders have shown promising results in terms of promoting medication adherence. However, practical mechanisms to determine whether a medication has been taken or not, once people are reminded, remain elusive. Emerging smartwatch technology may more objectively, unobtrusively, and automatically detect medication taking than currently available methods.

OBJECTIVE

This study aimed to examine the feasibility of detecting natural medication-taking gestures using smartwatches.

METHODS

A convenience sample (N=28) was recruited using the snowball sampling method<i>.</i> During data collection, each participant recorded at least 5 protocol-guided (scripted) medication-taking events and at least 10 natural instances of medication-taking events per day for 5 days. Using a smartwatch, the accelerometer data were recorded for each session at a sampling rate of 25 Hz. The raw recordings were scrutinized by a team member to validate the accuracy of the self-reports. The validated data were used to train an artificial neural network (ANN) to detect a medication-taking event. The training and testing data included previously recorded accelerometer data from smoking, eating, and jogging activities in addition to the medication-taking data recorded in this study. The accuracy of the model to identify medication taking was evaluated by comparing the ANN’s output with the actual output.

RESULTS

Most (n=20, 71%) of the 28 study participants were college students and aged 20 to 56 years. Most individuals were Asian (n=12, 43%) or White (n=12, 43%), single (n=24, 86%), and right-hand dominant (n=23, 82%). In total, 2800 medication-taking gestures (n=1400, 50% natural plus n=1400, 50% scripted gestures) were used to train the network. During the testing session, 560 natural medication-taking events that were not previously presented to the ANN were used to assess the network. The accuracy, precision, and recall were calculated to confirm the performance of the network. The trained ANN exhibited an average true-positive and true-negative performance of 96.5% and 94.5%, respectively. The network exhibited &lt;5% error in the incorrect classification of medication-taking gestures.

CONCLUSIONS

Smartwatch technology may provide an accurate, nonintrusive means of monitoring complex human behaviors such as natural medication-taking gestures. Future research is warranted to evaluate the efficacy of using modern sensing devices and machine learning algorithms to monitor medication-taking behavior and improve medication adherence.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3