Predicting Norovirus in England Using Existing and Emerging Syndromic Data: Infodemiology Study (Preprint)

Author:

Ondrikova NikolaORCID,Harris John PORCID,Douglas AmyORCID,Hughes Helen EORCID,Iturriza-Gomara MirenORCID,Vivancos RobertoORCID,Elliot Alex JORCID,Cunliffe Nigel AORCID,Clough Helen EORCID

Abstract

BACKGROUND

Norovirus is associated with approximately 18% of the global burden of gastroenteritis and affects all age groups. There is currently no licensed vaccine or available antiviral treatment. However, well-designed early warning systems and forecasting can guide nonpharmaceutical approaches to norovirus infection prevention and control.

OBJECTIVE

This study evaluates the predictive power of existing syndromic surveillance data and emerging data sources, such as internet searches and Wikipedia page views, to predict norovirus activity across a range of age groups across England.

METHODS

We used existing syndromic surveillance and emerging syndromic data to predict laboratory data indicating norovirus activity. Two methods are used to evaluate the predictive potential of syndromic variables. First, the Granger causality framework was used to assess whether individual variables precede changes in norovirus laboratory reports in a given region or an age group. Then, we used random forest modeling to estimate the importance of each variable in the context of others with two methods: (1) change in the mean square error and (2) node purity. Finally, these results were combined into a visualization indicating the most influential predictors for norovirus laboratory reports in a specific age group and region.

RESULTS

Our results suggest that syndromic surveillance data include valuable predictors for norovirus laboratory reports in England. However, Wikipedia page views are less likely to provide prediction improvements on top of Google Trends and Existing Syndromic Data. Predictors displayed varying relevance across age groups and regions. For example, the random forest modeling based on selected existing and emerging syndromic variables explained 60% variance in the ≥65 years age group, 42% in the East of England, but only 13% in the South West region. Emerging data sets highlighted relative search volumes, including “flu symptoms,” “norovirus in pregnancy,” and norovirus activity in specific years, such as “norovirus 2016.” Symptoms of vomiting and gastroenteritis in multiple age groups were identified as important predictors within existing data sources.

CONCLUSIONS

Existing and emerging data sources can help predict norovirus activity in England in some age groups and geographic regions, particularly, predictors concerning vomiting, gastroenteritis, and norovirus in the vulnerable populations and historical terms such as stomach flu. However, syndromic predictors were less relevant in some age groups and regions likely due to contrasting public health practices between regions and health information–seeking behavior between age groups. Additionally, predictors relevant to one norovirus season may not contribute to other seasons. Data biases, such as low spatial granularity in Google Trends and especially in Wikipedia data, also play a role in the results. Moreover, internet searches can provide insight into mental models, that is, an individual’s conceptual understanding of norovirus infection and transmission, which could be used in public health communication strategies.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3