Collaborative Human–Computer Vision Operative Video Analysis Algorithm for Analyzing Surgical Fluency and Surgical Interruptions in Endonasal Endoscopic Pituitary Surgery: Cohort Study (Preprint)

Author:

Wong Chia-EnORCID,Chen Pei-WenORCID,Hsu Heng-JuiORCID,Cheng Shao-YangORCID,Fan Chen-CheORCID,Chen Yen-ChangORCID,Chiu Yi-PeiORCID,Lee Jung-ShunORCID,Liang Sheng-FuORCID

Abstract

BACKGROUND

The endonasal endoscopic approach (EEA) is effective for pituitary adenoma resection. However, manual review of operative videos is time-consuming. The application of a computer vision (CV) algorithm could potentially reduce the time required for operative video review and facilitate the training of surgeons to overcome the learning curve of EEA.

OBJECTIVE

This study aimed to evaluate the performance of a CV-based video analysis system, based on OpenCV algorithm, to detect surgical interruptions and analyze surgical fluency in EEA. The accuracy of the CV-based video analysis was investigated, and the time required for operative video review using CV-based analysis was compared to that of manual review.

METHODS

The dominant color of each frame in the EEA video was determined using OpenCV. We developed an algorithm to identify events of surgical interruption if the alterations in the dominant color pixels reached certain thresholds. The thresholds were determined by training the current algorithm using EEA videos. The accuracy of the CV analysis was determined by manual review, and the time spent was reported.

RESULTS

A total of 46 EEA operative videos were analyzed, with 93.6%, 95.1%, and 93.3% accuracies in the training, test 1, and test 2 data sets, respectively. Compared with manual review, CV-based analysis reduced the time required for operative video review by 86% (manual review: 166.8 and CV analysis: 22.6 minutes; <i>P</i><.001). The application of a human-computer collaborative strategy increased the overall accuracy to 98.5%, with a 74% reduction in the review time (manual review: 166.8 and human-CV collaboration: 43.4 minutes; <i>P</i><.001). Analysis of the different surgical phases showed that the sellar phase had the lowest frequency (nasal phase: 14.9, sphenoidal phase: 15.9, and sellar phase: 4.9 interruptions/10 minutes; <i>P</i><.001) and duration (nasal phase: 67.4, sphenoidal phase: 77.9, and sellar phase: 31.1 seconds/10 minutes; <i>P</i><.001) of surgical interruptions. A comparison of the early and late EEA videos showed that increased surgical experience was associated with a decreased number (early: 4.9 and late: 2.9 interruptions/10 minutes; <i>P</i>=.03) and duration (early: 41.1 and late: 19.8 seconds/10 minutes; <i>P</i>=.02) of surgical interruptions during the sellar phase.

CONCLUSIONS

CV-based analysis had a 93% to 98% accuracy in detecting the number, frequency, and duration of surgical interruptions occurring during EEA. Moreover, CV-based analysis reduced the time required to analyze the surgical fluency in EEA videos compared to manual review. The application of CV can facilitate the training of surgeons to overcome the learning curve of endoscopic skull base surgery.

CLINICALTRIAL

ClinicalTrials.gov NCT06156020; https://clinicaltrials.gov/study/NCT06156020

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3