Development and Verification of a Time Series AI Model for Acute Kidney Injury Detection Based on a Multicenter Distributed Research Network (Preprint)

Author:

Heo SuncheolORCID,Kang Eun-AeORCID,Yu Jae YongORCID,Kim Hae ReongORCID,Lee SuehyunORCID,Kim KwangsooORCID,Hwangbo YulORCID,Park Rae WoongORCID,Shin HyunahORCID,Ryu KyeongminORCID,Kim ChungsooORCID,Jung HyojungORCID,Chegal YebinORCID,Lee Jae-HyunORCID,Park Yu RangORCID

Abstract

BACKGROUND

Acute kidney injury (AKI) is a marker of clinical deterioration and renal toxicity. While there are many studies offering prediction models for the early detection of AKI, those predicting AKI occurrence using distributed research network (DRN)-based time series data are rare.

OBJECTIVE

In this study, we aimed to detect the early occurrence of AKI by applying the interpretable LSTM-based model on a hospital EHR-based time series in patients who took nephrotoxic drugs using a DRN.

METHODS

We conducted a multi-institutional retrospective cohort study of data from six hospitals using a DRN. For each institution, a patient-based dataset was constructed using five drugs for AKI, and the interpretable multi-variable long short-term memory (IMV-LSTM) model was used for training. This study employed propensity score matching to mitigate differences in demographics and clinical characteristics. Additionally, the temporal attention values of the AKI prediction model's contribution variables were demonstrated for each institution and drug, with differences in highly important feature distributions between the case and control data confirmed using one-way analysis of variance.

RESULTS

This study analyzed 8,643 and 31,012 patients with and without AKI, respectively, across six hospitals. When analyzing the distribution of AKI onset, vancomycin showed an earlier onset (median: 12 days), and acyclovir was the slowest compared to the other drugs (median: 23 days). Our temporal deep learning model for AKI prediction performed well for most drugs. Acyclovir had the highest average area under the receiver operating characteristic curve score per drug (0.94), followed by acetaminophen (0.93), vancomycin (0.92), naproxen (0.90), and celecoxib (0.80). Based on the temporal attention values of the variables in the AKI prediction model, verified lymphocytes and calcium had the highest attention, whereas lymphocytes, albumin, and hemoglobin tended to decrease over time, and urine pH and prothrombin time tended to increase.

CONCLUSIONS

Early surveillance of AKI outbreaks can be achieved by applying the IMV-LSTM based on time series data through hospital electronic health records (EHR)-based DRNs. This approach can help identify risk factors and enable early detection of adverse drug reactions when prescribing drugs that cause renal toxicity before AKI occurs.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3