Can increases in Twitter posts predict increases in cumulative incidence of COVID-19 in the United States? Evidence that social media can inform epidemic surveillance. (Preprint)

Author:

Sun RuoyanORCID,Budhwani HennaORCID

Abstract

BACKGROUND

Though public health systems are responding rapidly to the COVID-19 pandemic, outcomes from publicly available, crowd-sourced big data may assist in helping to identify hot spots, prioritize equipment allocation and staffing, while also informing health policy related to “shelter in place” and social distancing recommendations.

OBJECTIVE

To assess if the rising state-level prevalence of COVID-19 related posts on Twitter (tweets) is predictive of state-level cumulative COVID-19 incidence after controlling for socio-economic characteristics.

METHODS

We identified extracted COVID-19 related tweets from January 21st to March 7th (2020) across all 50 states (N = 7,427,057). Tweets were combined with state-level characteristics and confirmed COVID-19 cases to determine the association between public commentary and cumulative incidence.

RESULTS

The cumulative incidence of COVID-19 cases varied significantly across states. Ratio of tweet increase (p=0.03), number of physicians per 1,000 population (p=0.01), education attainment (p=0.006), income per capita (p = 0.002), and percentage of adult population (p=0.003) were positively associated with cumulative incidence. Ratio of tweet increase was significantly associated with the logarithmic of cumulative incidence (p=0.06) with a coefficient of 0.26.

CONCLUSIONS

An increase in the prevalence of state-level tweets was predictive of an increase in COVID-19 diagnoses, providing evidence that Twitter can be a valuable surveillance tool for public health.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3