Wisdom of the Experts versus Wisdom of the Crowd in Hospital Quality Ratings: Cross-Sectional Analyses of Google Ratings (Preprint)

Author:

Ramasubramanian HariORCID,Joshi Satish,Krishnan Ranjani

Abstract

BACKGROUND

Popular online portals provide free and convenient access to user-generated quality reviews. Centers for Medicare and Medicaid Services (CMS) also provide patients with Hospital Compare Star Ratings (HCSR), a single public measure of hospital quality aggregating multiple quality dimensions. Consumers often use crowdsourced hospital ratings on platforms such as Google to select hospitals, but it is unknown if these ratings reflect a comprehensive measure of clinical quality.

OBJECTIVE

We analyze if Google online quality ratings, which reflect the wisdom of the crowd, are associated with HCSR, which reflect the wisdom of the experts. CMS revised the methodology of assigning star ratings to hospitals. Therefore, we analyze these associations before and after the 2021 revisions of the CMS rating system.

METHODS

We extracted Google ratings using Application Programming Interface (API) in June 2020. The HCSR data of April 2020 (before the revision of HCSR methodology) and April 2021 (after the revision of HCSR methodology) were obtained from CMS’ Hospital Compare (HC) website. We also extracted scores for the individual components of hospital quality for each of the hospitals in our sample using the code provided by HC. Fractional Response Model (FRM) was used to estimate the association between Google Ratings and HCSR and individual components of quality.

RESULTS

Results indicate that Google ratings are statistically associated with HCSR (P<.001) after controlling for hospital level effects. A one star improvement in CMS ratings before the change in methodology (after the change in methodology) is expected to increase the Google ratings by 0.145 (0.135) on average (95% CI 0.127- 0.163; P<.001, 95% CI 0.116-0.153; P<.001). The analyses with individual components of hospital quality reveal that Google ratings are not associated with components of HCSR that require medical expertise such as ‘Safety of care’ or ‘Readmissions’. The revised CMS rating system ameliorates previous partial inconsistencies in association between Google ratings and component scores of HCSR.

CONCLUSIONS

Overall, crowd sourced Google hospital ratings are informative about expert CMS hospital quality ratings and several individual quality components that are easier for patients to evaluate. Therefore, hospitals should not expect improvements in quality metrics that require expertise to assess such as safety of care and readmission to result in improved Google star ratings. Hospitals can benefit from using crowd-sourced ratings as timely, easily available, and dynamic indicators of their quality performance.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3