Debate and Dilemmas Regarding Generative AI in Mental Health Care: Scoping Review (Preprint)

Author:

Xian XuechangORCID,Chang AngelaORCID,Xiang Yu-TaoORCID,Liu Matthew TingchiORCID

Abstract

BACKGROUND

Mental disorders have ranked among the top 10 prevalent causes of burden on a global scale. Generative artificial intelligence (GAI) has emerged as a promising and innovative technological advancement that has significant potential in the field of mental health care. Nevertheless, there is a scarcity of research dedicated to examining and understanding the application landscape of GAI within this domain.

OBJECTIVE

This review aims to inform the current state of GAI knowledge and identify its key uses in the mental health domain by consolidating relevant literature.

METHODS

Records were searched within 8 reputable sources including Web of Science, PubMed, IEEE Xplore, medRxiv, bioRxiv, Google Scholar, CNKI and Wanfang databases between 2013 and 2023. Our focus was on original, empirical research with either English or Chinese publications that use GAI technologies to benefit mental health. For an exhaustive search, we also checked the studies cited by relevant literature. Two reviewers were responsible for the data selection process, and all the extracted data were synthesized and summarized for brief and in-depth analyses depending on the GAI approaches used (traditional retrieval and rule-based techniques vs advanced GAI techniques).

RESULTS

In this review of 144 articles, 44 (30.6%) met the inclusion criteria for detailed analysis. Six key uses of advanced GAI emerged: mental disorder detection, counseling support, therapeutic application, clinical training, clinical decision-making support, and goal-driven optimization. Advanced GAI systems have been mainly focused on therapeutic applications (n=19, 43%) and counseling support (n=13, 30%), with clinical training being the least common. Most studies (n=28, 64%) focused broadly on mental health, while specific conditions such as anxiety (n=1, 2%), bipolar disorder (n=2, 5%), eating disorders (n=1, 2%), posttraumatic stress disorder (n=2, 5%), and schizophrenia (n=1, 2%) received limited attention. Despite prevalent use, the efficacy of ChatGPT in the detection of mental disorders remains insufficient. In addition, 100 articles on traditional GAI approaches were found, indicating diverse areas where advanced GAI could enhance mental health care.

CONCLUSIONS

This study provides a comprehensive overview of the use of GAI in mental health care, which serves as a valuable guide for future research, practical applications, and policy development in this domain. While GAI demonstrates promise in augmenting mental health care services, its inherent limitations emphasize its role as a supplementary tool rather than a replacement for trained mental health providers. A conscientious and ethical integration of GAI techniques is necessary, ensuring a balanced approach that maximizes benefits while mitigating potential challenges in mental health care practices.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3