Exploring Fever of Unknown Origin Intelligent Diagnosis Based on Clinical Data: Model Development and Validation (Preprint)

Author:

Jiang HuizhenORCID,Li YuanjieORCID,Zeng XuejunORCID,Xu NaORCID,Zhao CongpuORCID,Zhang JingORCID,Zhu WeiguoORCID

Abstract

BACKGROUND

Fever of unknown origin (FUO) is a group of diseases with heterogeneous complex causes that are misdiagnosed or have delayed diagnoses. Previous studies have focused mainly on the statistical analysis and research of the cases. The treatments are very different for the different categories of FUO. Therefore, how to intelligently diagnose FUO into one category is worth studying.

OBJECTIVE

We aimed to fuse all of the medical data together to automatically predict the categories of the causes of FUO among patients using a machine learning method, which could help doctors diagnose FUO more accurately.

METHODS

In this paper, we innovatively and manually built the FUO intelligent diagnosis (FID) model to help clinicians predict the category of the cause and improve the manual diagnostic precision. First, we classified FUO cases into four categories (infections, immune diseases, tumors, and others) according to the large numbers of different causes and treatment methods. Then, we cleaned the basic information data and clinical laboratory results and structured the electronic medical record (EMR) data using the bidirectional encoder representations from transformers (BERT) model. Next, we extracted the features based on the structured sample data and trained the FID model using LightGBM.

RESULTS

Experiments were based on data from 2299 desensitized cases from Peking Union Medical College Hospital. From the extensive experiments, the precision of the FID model was 81.68% for top 1 classification diagnosis and 96.17% for top 2 classification diagnosis, which were superior to the precision of the comparative method.

CONCLUSIONS

The FID model showed excellent performance in FUO diagnosis and thus would be a potentially useful tool for clinicians to enhance the precision of FUO diagnosis and reduce the rate of misdiagnosis.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3