Assessing Neonatal Intensive Care Unit Structures and Outcomes Before and During the COVID-19 Pandemic: Network Analysis Study (Preprint)

Author:

Mannering HannahORCID,Yan ChaoORCID,Gong YangORCID,Alrifai Mhd WaelORCID,France DanielORCID,Chen YouORCID

Abstract

BACKGROUND

Health care organizations (HCOs) adopt strategies (eg. physical distancing) to protect clinicians and patients in intensive care units (ICUs) during the COVID-19 pandemic. Many care activities physically performed before the COVID-19 pandemic have transitioned to virtual systems during the pandemic. These transitions can interfere with collaboration structures in the ICU, which may impact clinical outcomes. Understanding the differences can help HCOs identify challenges when transitioning physical collaboration to the virtual setting in the post–COVID-19 era.

OBJECTIVE

This study aims to leverage network analysis to determine the changes in neonatal ICU (NICU) collaboration structures from the pre– to the intra–COVID-19 era.

METHODS

In this retrospective study, we applied network analysis to the utilization of electronic health records (EHRs) of 712 critically ill neonates (pre–COVID-19, n=386; intra–COVID-19, n=326, excluding those with COVID-19) admitted to the NICU of Vanderbilt University Medical Center between September 1, 2019, and June 30, 2020, to assess collaboration between clinicians. We characterized pre–COVID-19 as the period of September-December 2019 and intra–COVID-19 as the period of March-June 2020. These 2 groups were compared using patients’ clinical characteristics, including age, sex, race, length of stay (LOS), and discharge dispositions. We leveraged the clinicians’ actions committed to the patients’ EHRs to measure clinician-clinician connections. We characterized a collaboration relationship (tie) between 2 clinicians as actioning EHRs of the same patient within the same day. On defining collaboration relationship, we built pre– and intra–COVID-19 networks. We used 3 sociometric measurements, including eigenvector centrality, eccentricity, and betweenness, to quantify a clinician’s leadership, collaboration difficulty, and broad skill sets in a network, respectively. We assessed the extent to which the eigenvector centrality, eccentricity, and betweenness of clinicians in the 2 networks are statistically different, using Mann-Whitney <i>U</i> tests (95% CI).

RESULTS

Collaboration difficulty increased from the pre– to intra–COVID-19 periods (median eccentricity: 3 vs 4; <i>P</i>&lt;.001). Nurses had reduced leadership (median eigenvector centrality: 0.183 vs 0.087; <i>P</i>&lt;.001), and neonatologists with broader skill sets cared for more patients in the NICU structure during the pandemic (median betweenness centrality: 0.0001 vs 0.005; <i>P</i>&lt;.001). The pre– and intra–COVID-19 patient groups shared similar distributions in sex (~0 difference), race (4% difference in White, and 3% difference in African American), LOS (interquartile range difference in 1.5 days), and discharge dispositions (~0 difference in home, 2% difference in expired, and 2% difference in others). There were no significant differences in the patient demographics and outcomes between the 2 groups.

CONCLUSIONS

Management of NICU-admitted patients typically requires multidisciplinary care teams. Understanding collaboration structures can provide fine-grained evidence to potentially refine or optimize existing teamwork in the NICU.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3