An Ensemble Learning Approach to Improving Prediction of Case Duration for Spine Surgery Using Patient and Surgical Features (Preprint)

Author:

Gabriel Rodney Allanigue,Harjai Bhavya,Simpson Sierra,Du Austin Liu,Tully Jeffrey LoganORCID,George Olivier,Waterman Ruth Susanna

Abstract

BACKGROUND

Estimating surgical case duration accurately is an important operating room efficiency metric.

OBJECTIVE

The primary objective of this 4-year, single academic center retrospective study was to utilize an ensemble learning approach to improve the accuracy of scheduled case duration for spine surgery. The primary outcome measure was case duration.

METHODS

We compared machine learning models using surgical and patient features to our institutional method, which used historic averages and surgeon adjustment as needed. We implemented multivariable linear regression, random forest, bagging, and XGBoost and calculated average R2, root mean squared error (RMSE), and mean absolute error (MAE) using stratified k-folds cross-validation. We then used the Shapley Additive exPlanations (SHAP) explainer model to determine feature importance.

RESULTS

3,315 patients who underwent spine surgery were included. The institution’s current method of predicting case times had poor coefficient of determination with actual times (R2 = 0.19). On k-folds cross-validation, the linear regression model had an R2 of 0.34, RMSE of 165.3, and MAE of 128.4. Among all models, the XGBoost regressor performed the best with an R2 of 0.70, RMSE of 110.9, and MAE of 75.8. Based on SHAP analysis of the XGBoost regression, body mass index, spinal fusions, surgical procedure, and number of spine levels involved were the features with the most impact on the model.

CONCLUSIONS

Utilizing ensemble learning-based predictive models, specifically XGBoost regression, can improve accuracy of the estimation of spine surgery times.

CLINICALTRIAL

N/A

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3