BACKGROUND
Emotional clarity has often been assessed with self-report measures, but efforts have also been made to measure it passively, which has advantages such as avoiding potential inaccuracy in responses stemming from social desirability bias or poor insight into emotional clarity. Response times (RTs) to emotion items administered in ecological momentary assessments (EMAs) may be an indirect indicator of emotional clarity. Another proposed indicator is the <i>drift rate</i> parameter, which assumes that, aside from how fast a person responds to emotion items, the measurement of emotional clarity also requires the consideration of how careful participants were in providing responses.
OBJECTIVE
This paper aims to examine the reliability and validity of RTs and drift rate parameters from EMA emotion items as indicators of individual differences in emotional clarity.
METHODS
Secondary data analysis was conducted on data from 196 adults with type 1 diabetes who completed a 2-week EMA study involving the completion of 5 to 6 surveys daily. If lower RTs and higher drift rates (from EMA emotion items) were indicators of emotional clarity, we hypothesized that greater levels (ie, higher clarity) should be associated with greater life satisfaction; lower levels of neuroticism, depression, anxiety, and diabetes distress; and fewer difficulties with emotion regulation. Because prior literature suggested emotional clarity could be valence specific, EMA items for negative affect (NA) and positive affect were examined separately.
RESULTS
Reliability of the proposed indicators of emotional clarity was acceptable with a small number of EMA prompts (ie, 4 to 7 prompts in total or 1 to 2 days of EMA surveys). Consistent with expectations, the average drift rate of NA items across multiple EMAs had expected associations with other measures, such as correlations of <i>r</i>=–0.27 (<i>P</i><.001) with depression symptoms, <i>r</i>=–0.27 (<i>P</i>=.001) with anxiety symptoms, <i>r</i>=–0.15 (<i>P</i>=.03) with emotion regulation difficulties, and <i>r</i>=0.63 (<i>P</i><.001) with RTs to NA items. People with a higher NA drift rate responded faster to NA emotion items, had greater subjective well-being (eg, fewer depression symptoms), and had fewer difficulties with overall emotion regulation, which are all aligned with the expectation for an emotional clarity measure. Contrary to expectations, the validities of average RTs to NA items, the drift rate of positive affect items, and RTs to positive affect items were not strongly supported by our results.
CONCLUSIONS
Study findings provided initial support for the validity of NA drift rate as an indicator of emotional clarity but not for that of other RT-based clarity measures. Evidence was preliminary because the sample size was not sufficient to detect small but potentially meaningful correlations, as the sample size of the diabetes EMA study was chosen for other more primary research questions. Further research on passive emotional clarity measures is needed.